
Vision HDL Toolbox™

Reference

R2017a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Vision HDL Toolbox™ Reference
© COPYRIGHT 2015–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

March 2015 Online only New for Version 1.0 (Release R2015a)
September 2015 Online only Revised for Version 1.1 (Release R2015b)
March 2016 Online only Revised for Version 1.2 (Release R2016a)
September 2016 Online only Revised for Version 1.3 (Release R2016b)
March 2017 Online only Revised for Version 1.4 (Release R2017a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Blocks — Alphabetical List
1

System Objects — Alphabetical List
2

Functions — Alphabetical List
3

iii

1

Blocks — Alphabetical List

1 Blocks — Alphabetical List

Chroma Resampler

Downsample or upsample chrominance component

Library

visionhdlconversions

Description

The Chroma Resampler block downsamples or upsamples a pixel stream.

• Downsampling reduces bandwidth and storage requirements in a video system by
combining pixel chrominance components over multiple pixels. You can specify a filter
to prevent aliasing, by selecting the default filter or by entering coefficients.

• Upsampling restores a signal to its original rate. You can use interpolation or
replication to calculate the extra sample.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox™ blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

The block accepts luma and chrominance components. The block does not modify the
luma component, and applies delay to align it with the resampled chrominance outputs.
The rate of the output luma component is the same as the input.

1-2

 Chroma Resampler

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single pixel in Y'CbCr color space,
specified as a vector of three
values. The data type of the output
is the same as the data type of the
input.

• uint8 or uint16
• fixdt(0,N,0), N = 8,9,...,16

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Parameters

Main

Resampling
Resampling operation.

• 4:4:4 to 4:2:2 (default)
• 4:2:2 to 4:4:4

If you select 4:4:4 to 4:2:2, the block performs a downsampling operation. If you
select 4:2:2 to 4:4:4, the block performs an upsampling operation.

Antialiasing filter
Lowpass filter to follow a downsample operation.

• Auto (default)
• Property

• None

If you select Auto, the block uses a built-in lowpass filter. If you select Property, the
Horizontal filter coefficients parameter appears on the dialog box. If you select

1-3

1 Blocks — Alphabetical List

None, the block does not filter the input signal. This parameter is visible when you
set Resampling to 4:4:4 to 4:2:2.

Horizontal filter coefficients
Coefficients for the antialiasing filter.

Enter the coefficients as a vector. The default is [0.2,0.6,0.2]. This parameter
is visible if you set Resampling to 4:4:4 to 4:2:2 and Antialiasing filter to
Property.

Interpolation
Interpolation method for an upsample operation.

• Linear (default)
• Pixel replication

If you select Linear, the block uses linear interpolation to calculate the missing
values. If you select Pixel replication, the block repeats the chrominance values
of the preceding pixel to create the missing pixel. This parameter is visible if you set
Resampling to 4:2:2 to 4:4:4.

Data Types

The parameters on this tab appear only when they are relevant. If your selections on the
Main tab configure the block so that no filter coefficients are needed, or no rounding or
overflow is possible, the irrelevant parameter is hidden.

Rounding mode
Rounding method for internal fixed-point calculations. Rounding mode appears
when you select linear interpolation, or include an antialiasing filter. The default is
Floor.

Overflow mode
Overflow action for internal fixed-point calculations. Overflow can occur when you
include an antialiasing filter. The default is Wrap.

Filter coefficients
Data type for the antialiasing filter coefficients.

The default is fixdt(1,16,0). This parameter is visible when you set Antialiasing
filter to Auto or Property.

1-4

 Chroma Resampler

Algorithm

The default antialiasing filter is a 29-tap lowpass filter that matches the default Chroma
Resampling block in Computer Vision System Toolbox™. In the frequency response of
this filter, the passband, [-0.25 0.25], occupies half of the total bandwidth. This filter
suppresses aliasing after 4:4:4 to 4:2:2 downsampling.

Whether you use the default filter or specify your own coefficients, the filter is
implemented in HDL using a fully parallel architecture. HDL code generation takes
advantage of symmetric, unity, or zero-value coefficients to reduce the number of
multipliers.

The block pads the edge of the image with symmetric pixel values. See “Edge Padding”.
Also, if the frame is an odd number of pixels wide, the block symmetrically pads the line.
This accommodation makes the block more resilient to video timing variation.

1-5

1 Blocks — Alphabetical List

Latency

The latency is the number of cycles between the first valid input pixel and the first valid
output pixel. When you use an antialiasing filter, the latency depends on the size and
value of the filter coefficients. The FIR delay can be less than the number of coefficients
because the block optimizes out duplicate or zero-value coefficients.

Block Configuration Latency

Downsample (4:4:4 to 4:2:2), no filter 3
Downsample (4:4:4 to 4:2:2), with filter 4+(N/2)+FIR delay, N = number of filter

coefficients
Upsample (4:2:2 to 4:4:4), replication 3
Upsample (4:2:2 to 4:4:4), interpolation 5

For example, the latency for a downsample using the default filter is 30 cycles.

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

See Also

See Also
visionhdl.ChromaResampler | Chroma Resampling | Frame To Pixels

Introduced in R2015a

1-6

 Closing

Closing
Morphological closing of binary pixel data

Library

visionhdlmorph

Description

The Closing block performs morphological dilation, followed by morphological erosion,
using the same neighborhood for both calculations. The block operates on a stream of
binary intensity values.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified as a
scalar binary value.

boolean

ctrl Input/
Output

Control signals describing the
validity of the pixel and the

pixelcontrol

1-7

1 Blocks — Alphabetical List

Port Direction Description Data Type

location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

Parameters

Neighborhood
Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The block supports neighborhoods of up to 32×32 pixels. To use a structuring
element, specify Neighborhood as getnhood(strel(shape)).

The default is [0,1,0;1,1,1;0,1,0].
Line buffer size

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest
power of two. The block allocates (neighborhood lines – 1)-by-Line buffer size
memory locations to store the pixels. The default is 2048.

Algorithm

The block pads the image with zeroes for the dilation operation, and with ones for the
erosion operation. See “Edge Padding”.

Latency

The total latency of the block is the line buffer latency plus the latency of the kernel
calculation. Morphological closing is a compound operation. Therefore, this block contains
a second line buffer between the dilation kernel and the erosion kernel. To determine
the exact latency for any configuration of the block, monitor the number of time steps
between the input control signals and the output control signals.

1-8

 Closing

The latency of the line memory includes edge padding. The latency of the kernel depends
on the neighborhood size.

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

See Also

See Also
visionhdl.Closing | Closing | Dilation | Erosion | Frame To Pixels | Opening

Topics
“Morphological Dilation and Erosion” (Image Processing Toolbox)
“Structuring Elements” (Image Processing Toolbox)

Introduced in R2015a

1-9

1 Blocks — Alphabetical List

Color Space Converter
Convert color information between color spaces

Library
visionhdlconversions

Description
The Color Space Converter block converts between R'G'B' and Y'CbCr color spaces, and
also converts R'G'B' to intensity.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Note: The Color Space Converter block operates on gamma-corrected color spaces.
However, to simplify use of the block, the block and mask labels do not include the prime
notation.

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified by a
vector of three values representing

• uint8 or uint16

1-10

 Color Space Converter

Port Direction Description Data Type

R'G'B' or Y'CbCr, or a scalar value
representing intensity. The data
type of the output is the same as
the data type of the input.

• fixdt(0,N,0), N = 8,9,...,16

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Parameters
Conversion

Conversion that the block performs on the input video stream.

• RGB to YCbCr (default)
• YCbCr to RGB

• RGB to intensity

The block accepts input as a vector of three values representing a single pixel. If you
choose RGB to intensity, the output is a scalar value. Otherwise, the output is a
vector of three values.

Use conversion specified by
Conversion equation to use on the input video stream. This parameter does not apply
when you set Conversion to RGB to intensity.

• Rec. 601 (SDTV) (default)
• Rec. 709 (HDTV)

Scanning standard
Scanning standard to use for HDTV conversion. This parameter applies when you set
Use conversion specified by to Rec. 709 (HDTV).

• 1250/50/2:1 (default)
• 1125/60/2:1

1-11

1 Blocks — Alphabetical List

Algorithm

Conversion Between R'G'B' and Y'CbCr Color Spaces

The following equations define R'G'B' to Y'CbCr conversion and Y'CbCr to R'G'B'
conversion:

¢È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+ ¥

¢

¢

¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Y

Cb

Cr

R

G

B

16

128

128

A

¢
¢
¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= ¥

¢È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Ê

Ë

Á
Á

R

G

B

Y

Cb

Cr

B
16

128

128ÁÁ

ˆ

¯

˜
˜
˜

The values in matrices A and B are based on your choices for the Use conversion
specified by and Scanning standard parameters.

Use conversion specified by = Rec. 709 (HDTV)Matrix Use conversion specified by =
Rec. 601 (SDTV) Scanning standard =

1125/60/2:1
Scanning standard =
1250/50/2:1

A 0 25678824 0 50412941 0 09790588

0 1482229 0 29099279 0 43921

. . .

. . .- - 5569

0 43921569 0 36778831 0 07142737. . .- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 0.18258588 0.61423059 0.06200706

 -0.10064373 -0.338557195 0.43921569

 0.43921569 -0.39894216 -0.04027352

ÈÈ

Î

Í
Í
Í

˘

˚

˙
˙
˙

0 25678824 0 50412941 0 09790588

0 1482229 0 29099279 0 43921

. . .

. . .- - 5569

0 43921569 0 36778831 0 07142737. . .- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

B 1 1643836 0 1 5960268

1 1643836 0 39176229 0 81296765

1 164383

. .

. . .

.

- -

66 2 0172321 0.

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1.16438356 0 1.79274107

1.16438356 -0.21324861 -0.53290933

1.164338356 2.11240179 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 1643836 0 1 5960268

1 1643836 0 39176229 0 81296765

1 164383

. .

. . .

.

- -

66 2 0172321 0.

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Conversion from R'G'B' to Intensity

The following equation defines conversion from R'G'B' color space to intensity:

intensity = []
¢

¢

¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0 299 0 587 0 114. . .

R

G

B

1-12

 Color Space Converter

Data Types

For fixed-point and integer input, the block converts matrix A to fixdt(1,17,16), and
matrix B to fixdt(1,17,14).

For double or single input, the block applies the conversion matrices in double type, and
scales the Y'CbCr offset vector ([16,128,128]) by 1/255. The block saturates double or
single R'G'B' and intensity outputs to the range [0,1].

The Y'CbCr standard includes headroom and footroom. For 8-bit data, luminance values
16–235, and chrominance values 16–240, are valid. The Color Space Converter block pins
out-of-range input to these limits before calculating the conversion. The block scales the
offset vector and the allowed headroom and footroom depending on the word length of the
input signals. For example, when you convert a Y'CbCr input of type fixdt(0,10,0)
to R'G'B', the block multiplies the offset vector by 2(10 – 8) = 4. As a result, the valid
luminance range becomes 64–940 and the valid chrominance range becomes 64–960.

Latency

Blocks with R'G'B' input have a latency of 9 cycles. Blocks with Y'CbCr input have a
latency of 10 cycles because one cycle is required to check for and correct headroom and
footroom violations.

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

See Also

See Also
visionhdl.ColorspaceConverter | Color Space Conversion | Frame To Pixels

1-13

1 Blocks — Alphabetical List

Introduced in R2015a

1-14

 Demosaic Interpolator

Demosaic Interpolator

Construct RGB pixel data from Bayer pattern pixels

Library

visionhdlconversions

Description

The Demosaic Interpolator block provides a Bayer pattern interpolation filter for
streaming video data. The block implements the calculations using hardware-efficient,
multiplier-free algorithms for HDL code generation. You can select a low complexity
bilinear interpolation, or a moderate complexity gradient-corrected bilinear interpolation.

• When you choose bilinear interpolation, the block operates on a 3×3 pixel window
using only additions and bit shifts.

• When you choose gradient correction, the block operates on a 5×5 pixel window. The
calculation is performed using bit shift, addition, and low order Canonical Signed
Digit (CSD) multiplication.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

1-15

1 Blocks — Alphabetical List

Signal Attributes

Port Direction Description Data Type

pixel Input Single pixel, specified as a scalar
value.

• uint or int
• fixdt(0,N,0)

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

pixel Output Single pixel in RGB color space,
returned as a vector of three
values.

Same as the inputpixel

Parameters

Interpolation algorithm
Algorithm the block uses to calculate the missing pixel values.

• Bilinear — Average of the pixel values in the surrounding 3×3 neighborhood.
• Gradient-corrected linear (default) — Bilinear average, corrected for

intensity gradient.

Sensor alignment
Color sequence of the pixels in the input stream.

Select the sequence of R, G and B pixels that correspond to the 2-by-2 block of pixels
in the top-left corner of the input image. Specify the sequence in left-to-right, top-to-
bottom order. For instance, the default RGGB represents an image with this pattern.

1-16

 Demosaic Interpolator

Line buffer size
Size of the line memory buffer, specified as a scalar integer.

Choose a power of 2 that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. When you select Bilinear interpolation, the block allocates 2-by-Line
buffer size memory locations. When you select Gradient-corrected linear
interpolation, the block allocates 4-by-Line buffer size memory locations. The
default value is 2048.

Algorithm

The block pads the edges of the image with symmetric pixel values. See “Edge Padding”.

Interpolation

Bilinear Interpolation

The block interpolates the missing color values using a 3×3 neighborhood. The average
is calculated over the adjacent two pixels or four pixels, depending on the sensor color
pattern. The block implements this algorithm using only add and shift operations.

Gradient-Corrected Linear Interpolation

Gradient correction improves interpolation performance across edges by taking
advantage of the correlation between the color channels. The block calculates the missing
color values using bilinear interpolation, and then modifies the value corresponding
to the intensity gradient calculated over a 5×5 neighborhood. The block applies the
gradient correction using a fixed set of filter kernels. The filter coefficients were designed
empirically to perform well over a wide range of image data. The coefficients are
multiples of powers of two to enable an efficient hardware implementation. See [1].

1-17

1 Blocks — Alphabetical List

Latency

The block buffers one line of input pixels before starting bilinear interpolation
calculations. The gradient correction calculation starts after the block buffers 2 lines.

The latency of the block is the line buffer latency plus the latency of the kernel
calculation. The line buffer latency includes edge padding. To determine the exact latency
for any configuration of the block, you can measure the number of time steps between the
input control signals and the output control signals .

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

References

[1] Malvar, Henrique S., Li-wei He, and Ross Cutler. “High-Quality Linear Interpolation
for Demosaicing of Bayer-Patterned Color Images.” Microsoft Research, May
2004. http://research.microsoft.com/pubs/102068/Demosaicing_ICASSP04.pdf.

1-18

 Demosaic Interpolator

See Also

See Also
visionhdl.DemosaicInterpolator | Demosaic | Frame To Pixels

Introduced in R2015a

1-19

1 Blocks — Alphabetical List

Dilation

Morphological dilation of binary pixel data

Library

visionhdlmorph

Description

The Dilation block replaces each pixel with the local maximum of the neighborhood
around the pixel. The block operates on a stream of binary intensity values.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified as a
scalar binary value.

boolean

ctrl Input/
Output

Control signals describing the
validity of the pixel and the

pixelcontrol

1-20

 Dilation

Port Direction Description Data Type

location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

Parameters

Neighborhood
Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The block supports neighborhoods of up to 32×32 pixels. To use a structuring
element, specify Neighborhood as getnhood(strel(shape)).

The default is ones(3,3).
Line buffer size

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest
power of two. The block allocates (neighborhood lines – 1)-by-Line buffer size
memory locations to store the pixels. The default is 2048.

Algorithm

The block pads the image with zeroes for the dilation operation. See “Edge Padding”.

Latency

The latency of the block is the line buffer latency plus the latency of the kernel
calculation. The line buffer latency includes edge padding. To determine the exact latency
for any configuration of the block, you can measure the number of time steps between the
input control signals and the output control signals .

1-21

1 Blocks — Alphabetical List

The latency of the kernel depends on the neighborhood size.

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

See Also

See Also
visionhdl.Dilation | Erosion | Frame To Pixels

Topics
“Morphological Dilation and Erosion” (Image Processing Toolbox)
“Structuring Elements” (Image Processing Toolbox)

Introduced in R2015a

1-22

 Edge Detector

Edge Detector

Find edges of objects

Library

visionhdlanalysis

Description

The Edge Detector block finds the edges in a grayscale pixel stream using the Sobel,
Prewitt, or Roberts method. The block convolves the input pixels with derivative
approximation matrices to find the gradient of pixel magnitude along two orthogonal
directions. It then compares the sum of the squares of the gradients to the square of a
configurable threshold to determine if the gradients represent an edge.

By default, the block returns a binary image as a stream of pixel values. A pixel value of
1 indicates that the pixel is an edge. You can disable the edge output. You can also enable
output of the gradient values in the two orthogonal directions at each pixel.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

1-23

1 Blocks — Alphabetical List

Signal Attributes

Port Direction Description Data Type

pixel Input Single image pixel, specified as a
scalar value.

• uint or int
• fixdt()

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Th Input
(optional)

Threshold value that defines an
edge, specified as a scalar. The
block compares the square of this
value to the sum of the squares of
the gradients.

• uint or int
• fixdt()

double and single data types
are supported for simulation but
not for HDL code generation.

Edge Output
(optional)

Pixel value indicating whether
the pixel is an edge, returned as a
scalar binary value.

boolean

Gv, Gh Output
(optional)

Vertical and horizontal gradient
values. These ports are visible
when you choose the Sobel or
Prewitt method.

• uint or int
• fixdt()

double and single data types
are supported for simulation but
not for HDL code generation.

G45, G135 Output
(optional)

Orthogonal gradient values. These
ports are visible when you choose
the Roberts method.

Same as Gv, Gh

ctrl Output Control signals describing the
validity of the pixel and the
location of the pixel within

pixelcontrol

1-24

 Edge Detector

Port Direction Description Data Type

the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

Parameters

Main

Method
Edge detection algorithm.

Select Sobel, Prewitt, or Roberts method.
Output the binary image

Enable the Edge output port.

When selected, the block returns a stream of binary pixels representing the edges
detected in the input frame. By default, this check box is selected. You must select at
least one of Output the binary image and Output the gradient components.

Output the gradient components
Enable the gradient output ports.

When selected, two output ports return values representing the gradients calculated
in the two orthogonal directions. By default, this check box is not selected. When you
set Method to Sobel or Prewitt, the output ports Gv and Gh appear on the block.
When you set Method to Roberts, the output ports G45 and G135 appear on the
block.

You must select at least one of Output the binary image and Output the
gradient components.

Source of threshold value
Source for the gradient threshold value that indicates an edge.

You can set the threshold from an input port or from the dialog box. The default
value is Property. If you select Input port, the Th port appears on the block icon.

1-25

1 Blocks — Alphabetical List

Threshold value
Gradient threshold value that indicates an edge.

The block compares the square of this value to the sum of the squares of the
gradients. The block casts this value to the data type of the gradients. The default
value is 20. This option is visible when you set Source of threshold value to
Property.

Line buffer size
Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest
power of two. The block allocates (N - 1)-by-Line buffer size memory locations to
store the pixels, where N is the number of lines in the differential approximation
matrix. If you set Method to Sobel or Prewitt, then N is 3. If you set Method to
Roberts, then N is 2. The default value is 20.

Data Types

Rounding mode
Rounding mode for internal fixed-point calculations. The default is Floor.

Overflow mode
Overflow mode for internal fixed-point calculations. The default is Wrap.

Gradient Data Type
Data type for the two gradient output ports.

If you select the Output the gradient components check box on the Main tab, the
Gradient Data Type appears on this tab. The default is Inherit via internal rule,
which means the block automatically chooses full-precision data types.

Algorithm

The Edge Detector block provides three methods for detecting edges in an input image.
The methods use different derivative approximation matrices to find two orthogonal
gradients. The Sobel and Prewitt methods calculate the gradient in horizontal and

1-26

 Edge Detector

vertical directions. The Roberts method calculates the gradients at 45 degrees and 135
degrees. The block uses the same matrices as the Edge Detection block in Computer
Vision System Toolbox.

Method Direction 1 Direction 2

Sobel
1

8

1 0 1

2 0 2

1 0 1

-

-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

8

1 2 1

0 0 0

1 2 1- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Prewitt
1

6

1 0 1

1 0 1

1 0 1

-

-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

6

1 1 1

0 0 0

1 1 1- - -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Roberts
1

2

1 0

0 1-

È

Î
Í

˘

˚
˙

1

2

0 1

1 0-

È

Î
Í

˘

˚
˙

Note: The Prewitt coefficients require extra bits of precision because they are not powers
of two. The block uses 16 bits to represent the Prewitt coefficients. For 8-bit input, the
default size of the full-precision gradients is 27 bits. When using the Prewitt method, a
good practice is to reduce the word length used for the gradient calculation. Select the
Output the gradient components check box, and then on the Data Types tab, specify
a smaller word length using Gradient Data Type.

The block convolves the neighborhood of the input pixel with the derivative matrices,
D1 and D2. It then compares the sum of the squares of the gradients to the square of
the threshold. Computing the square of the threshold avoids constructing a square root
circuit. The block casts the gradients to the type you specified on the Data Types tab.
The type conversion on the square of the threshold matches the type of the sum of the
squares of the gradients.

1-27

1 Blocks — Alphabetical List

The block pads the edge of the image with symmetric pixel values. See “Edge Padding”.

Latency

The latency of the block is the line buffer latency plus the latency of the kernel
calculation. The line buffer latency includes edge padding. To determine the exact latency
for any configuration of the block, you can measure the number of time steps between the
input control signals and the output control signals .

1-28

 Edge Detector

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

See Also

See Also
visionhdl.EdgeDetector | Edge Detection | Frame To Pixels

Topics
“Edge Detection and Image Overlay”

Introduced in R2015a

1-29

1 Blocks — Alphabetical List

Erosion

Morphological erosion of binary pixel data

Library

visionhdlmorph

Description

The Erosion block replaces each pixel with the local minimum of the neighborhood
around the pixel. The block operates on a stream of binary intensity values.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified as a
scalar binary value.

boolean

ctrl Input/
Output

Control signals describing the
validity of the pixel and the

pixelcontrol

1-30

 Erosion

Port Direction Description Data Type

location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

Parameters

Neighborhood
Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The block supports neighborhoods of up to 32×32 pixels. To use a structuring
element, specify Neighborhood as getnhood(strel(shape)).

The default is ones(3,3).
Line buffer size

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest
power of two. The block allocates (neighborhood lines – 1)-by-Line buffer size
memory locations to store the pixels. The default is 2048.

Algorithm

The block pads the edge of the image with ones for the erosion operation. See “Edge
Padding”.

Latency

The latency of the block is the line buffer latency plus the latency of the kernel
calculation. The line buffer latency includes edge padding. To determine the exact latency
for any configuration of the block, you can measure the number of time steps between the
input control signals and the output control signals .

1-31

1 Blocks — Alphabetical List

The latency of the kernel depends on the neighborhood size.

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

See Also

See Also
visionhdl.Erosion | Dilation | Erosion | Frame To Pixels

Topics
“Morphological Dilation and Erosion” (Image Processing Toolbox)
“Structuring Elements” (Image Processing Toolbox)

Introduced in R2015a

1-32

 FIL Frame To Pixels

FIL Frame To Pixels
Convert frame-based video to pixel stream for FPGA-in-the-loop

Library

visionhdlio

Description

The FIL Frame To Pixels block performs the same frame-to-pixel conversion as the
Frame To Pixels block. In addition, you can configure the width of the output vector
to be a single pixel, a line, or an entire frame. The block returns control signals in vectors
of the same width as the pixel data. This optimization makes more efficient use of the
communication link between the FPGA board and your Simulink® simulation when using
FPGA-in-the-loop (FIL). To run FPGA-in-the-loop, you must have an HDL Verifier™
license.

When you generate a programming file for a FIL target in Simulink, the tool creates
a model to compare the FIL simulation with your Simulink design. For Vision HDL
Toolbox designs, the FIL block in that model replicates the pixel-streaming interface to
send one pixel at a time to the FPGA. You can modify the autogenerated model to use
the FIL Frame To Pixels and FIL Pixels To Frame blocks to improve communication

1-33

1 Blocks — Alphabetical List

bandwidth with the FPGA board by sending one frame at a time. For how to modify the
autogenerated model, see “FPGA-in-the-Loop”.

Specify the same video format and vector size for the FIL Frames To Pixels block and the
FIL Pixels To Frame block.

Signal Attributes

Port Direction Description Data Type

matrix Input Full image, specified as an Active
pixels per line-by-Active video
lines-by-N matrix. The height and
width are the dimensions of the active
image specified in Video format. N is
the Number of components used to
express a single pixel.

• uint or int
• fixdt()

• boolean

• double or single

data1,...,dataNOutput Image pixels, returned as a vector of
M values, where M is the width of the
Output vector format. There are N
data ports, where N is the Number of
components.

Specified by Data type

hStartOut Output Control signal indicating whether each
pixel is the first pixel in a horizontal
line of a frame, returned as a vector of
M values.

boolean

hEndOut Output Control signal indicating whether each
pixel is the last pixel in a horizontal
line of a frame, returned as a vector of
M values.

boolean

vStartOut Output Control signal indicating whether each
pixel is the first pixel in the first (top)
line of a frame, returned as a vector of
M values.

boolean

vEndOut Output Control signal indicating whether
each pixel is the last pixel in the last
(bottom) line of a frame, returned as a
vector of M values.

boolean

1-34

 FIL Frame To Pixels

Port Direction Description Data Type

validOut Output Control signal indicating the validity
of the output pixel, returned as a
vector of M values.

boolean

Parameters

Number of components
Component values of each pixel. The pixel can be represented by 1, 2, 3, or 4
components. Set to 1 for grayscale video. Set to 3 for color video, for example, {R,G,B}
or {Y,Cb,Cr}. Set to 4 to use color with an alpha channel for transparency. The output
is an Active pixels per line-by-Active video lines-by-Number of components
image matrix.

Data type
Output pixel data type. The default is uint8.

Output vector format
Size of the vector used to communicate with the FPGA subsystem. The block outputs
pixels and control signals in vectors of the same length. The block calculates the
length of the vectors based on the Video format parameter.

• Pixel — Output scalar values for pixel and control signals.
• Line — Output vectors contain Total pixels per line values.
• Frame — Output vectors contain Total pixels per line × Total video lines

values.

A larger value results in faster communication between the FPGA board and
Simulink. Choose the largest option that is supported by the I/O and memory
resources on your board.

Video format
Dimensions of active and inactive regions of a video frame. To select a predefined
format, use the Video format list. For a custom format, select Custom, and then
specify the dimensions as integers. The frame dimensions are indicated in the
diagram.

1-35

1 Blocks — Alphabetical List

Note: The sample time of your video source must match the total number of pixels in
the frame size you select in the Frame To Pixels block. Set the sample time to Total
pixels per line × Total lines.

Video

Format

Active

Pixels Per

Line

Active

Video

Lines

Total

Pixels Per

Line

Total

Video

Lines

Starting

Active

Line

Front

Porch

240p 320 240 402 324 1 44
480p 640 480 800 525 36 16
480pH 720 480 858 525 33 16
576p 720 576 864 625 47 12
720p 1280 720 1650 750 25 110

1-36

 FIL Frame To Pixels

Video

Format

Active

Pixels Per

Line

Active

Video

Lines

Total

Pixels Per

Line

Total

Video

Lines

Starting

Active

Line

Front

Porch

768p 1024 768 1344 806 10 24
1024p 1280 1024 1688 1066 42 48
1080p

(default)
1920 1080 2200 1125 42 88

1200p 1600 1200 2160 1250 50 64
2KCinema 2048 1080 2750 1125 42 639
4KUHDTV 3840 2160 4400 2250 42 88
8KUHDTV 7680 4320 8800 4500 42 88
Custom User-

defined
User-
defined

User-
defined

User-
defined

User-
defined

User-
defined

Note: When using a custom format, the values you enter for the active and inactive
dimensions of the image must add up to the total frame dimensions.

For the horizontal direction, Total pixels per line must be greater than or equal to
Front porch + Active pixels per line. The block calculates Back porch = Total
pixels per line − Front porch − Active pixels per line.

For the vertical direction, Total video lines must be greater than or equal to
Starting active line + Active video lines − 1. The block calculates Ending active
line = Starting active line + Active video lines − 1.

If you specify a format that does not conform to these rules, the block reports an
error.

Note: When using a custom format, Active pixels per line must be greater than 1.
Also, set the horizontal blanking interval, or Back porch + Front porch, according
to these guidelines.

• The total of Back porch + Front porch must be at least 2 times the largest
kernel size of the algorithm in the blocks following the Frame To Pixel block. If
the kernel size is < 4, the total porch must be at least 8 pixels.

1-37

1 Blocks — Alphabetical List

• The Back porch must be at least 6 pixels. This parameter is the number of
inactive pixels before the first valid pixel in a frame.

See Also

See Also
FIL Pixels To Frame | Frame To Pixels

Topics
“Streaming Pixel Interface”
“FPGA Verification” (HDL Verifier)

Introduced in R2015a

1-38

 FIL Pixels To Frame

FIL Pixels To Frame
Convert pixel stream from FPGA-in-the-loop to frame-based video

Library

visionhdlio

Description

The FIL Pixels To Frame block performs the same pixel-to-frame conversion as the
Pixels To Frame block. In addition, you can configure the width of the input to
be a single pixel, a line, or an entire frame per step. The block expects control signal
input vectors of the same width as the pixel data. This optimization can speed up the
communication link between the FPGA board and your Simulink simulation when using
FPGA-in-the-loop. To run FPGA-in-the-loop, you must have an HDL Verifier license.

When you generate a programming file for a FIL target in Simulink, the tool creates
a model to compare the FIL simulation with your Simulink design. For Vision HDL
Toolbox designs, the FIL block in that model replicates the pixel-streaming interface to
send one pixel at a time to the FPGA. You can modify the autogenerated model to use
the FIL Frame To Pixels and FIL Pixels To Frame blocks to improve communication

1-39

1 Blocks — Alphabetical List

bandwidth with the FPGA board by sending one frame at a time. For how to modify the
autogenerated model, see “FPGA-in-the-Loop”.

Specify the same video format for the FIL Frames To Pixels block and the FIL Pixels To
Frame block.

Signal Attributes

Port Direction Description Data Type

data1,...,dataNInput Image pixels, specified as a vector of
M values, where M is the width of the
Output vector format. There are N
data ports, where N is the Number
of components.

• uint or int
• fixdt()

• boolean

• double or single
hStartIn Input Control signal indicating whether

each pixel is the first pixel in a
horizontal line of an input frame,
returned as a vector of M values.

boolean

hEndIn Input Control signal indicating whether
each pixel is the last pixel in a
horizontal line of a frame, returned
as a vector of M values.

boolean

vStartIn Input Control signal indicating whether
each pixel is the first pixel in the first
(top) line of a frame, returned as a
vector of M values.

boolean

vEndIn Input Control signal indicating whether
each pixel is the last pixel in the last
(bottom) line of a frame, returned as
a vector of M values.

boolean

validIn Input Control signal indicating the validity
of the input pixel, returned as a
vector of M values.

boolean

matrix Output Full image, returned as an Active
pixels per line-by-Active video
lines-by-N matrix. The height and
width are the dimensions of the

Same as data1,...,dataN

1-40

 FIL Pixels To Frame

Port Direction Description Data Type

active image specified in Video
format. N is the Number of
components used to express a single
pixel.

validOut Output True when the output frame is
successfully recompiled from the
input stream.

boolean

Parameters

Number of components
Component values of each pixel. The pixel can be represented by 1, 2, 3, or 4
components. Set to 1 for grayscale video. Set to 3 for color video, for example, {R,G,B}
or {Y,Cb,Cr}. Set to 4 to use color with an alpha channel for transparency. The output
is an Active pixels per line-by-Active video lines-by-Number of components
image matrix.

Input vector format
Size of the vector used to communicate with the FPGA subsystem. The block accepts
input pixels and control signals in vectors of the same length. The block calculates
the length of the vectors based on the Video format parameter.

• Pixel — Accept scalar values for pixel and control signals.
• Line — Accept input vectors containing Total pixels per line values.
• Frame — Accept input vectors containing Total pixels per line × Total video

lines values.

A larger value results in faster communication between the FPGA board and
Simulink. Choose the largest option that is supported by the I/O and memory
resources on your board.

Video format
Dimensions of active and inactive regions of a video frame. To select a predefined
format, use the Video format list. For a custom format, select Custom, and then
specify the dimensions as integers.

1-41

1 Blocks — Alphabetical List

Video Format Active Pixels

Per Line

Active Video Lines

240p 320 240
480p 640 480
480pH 720 480
576p 720 576
720p 1280 720
768p 1024 768
1024p 1280 1024
1080p (default) 1920 1080
1200p 1600 1200
2KCinema 2048 1080
4KUHDTV 3840 2160
8KUHDTV 7680 4320
Custom User-

defined
User-
defined

See Also

See Also
FIL Frame To Pixels | Pixels To Frame

Topics
“Streaming Pixel Interface”
“FPGA Verification” (HDL Verifier)

Introduced in R2015a

1-42

 Frame To Pixels

Frame To Pixels
Convert frame-based video to pixel stream

Library

visionhdlio

Description

The Frame To Pixels block converts color or grayscale video frames to a pixel stream and
control signals. The control signals indicate the validity of each pixel and its location in
the frame. The pixel stream format can include padding pixels around the active frame.
You can configure the frame and padding dimensions by selecting a common video format
or specifying custom dimensions. See “Streaming Pixel Interface” for details of the pixel
stream format.

Use this block to generate input for a subsystem targeted for HDL code generation. This
block does not support HDL code generation.

If your model converts frames to a pixel stream and later converts the stream back to
frames, specify the same video format for the Frame To Pixels block and the Pixels To
Frame block.

Signal Attributes

Port Direction Description Data Type

frame Input Full image specified as a Active
pixels per line-by-Active video

• uint or int
• fixdt()

1-43

1 Blocks — Alphabetical List

Port Direction Description Data Type

lines-by-N matrix. Height and width
are the dimensions of the active
image specified in Video format. N
is the Number of components used
to express a single pixel.

• boolean

• double or single

pixel Output Single image pixel returned as
a vector of 1-by-Number of
components values.

Specified by Data type

ctrl Output Control signals describing the
validity of the pixel and the location
of the pixel within the frame,
specified as a bus containing five
signals. See “Pixel Control Bus”.

pixelcontrol

Parameters

Number of components
Component values of each pixel. The pixel can be represented by 1, 2, 3, or 4
components. Set to 1 for grayscale video. Set to 3 for color video, for example, {R,G,B}
or {Y,Cb,Cr}. Set to 4 to use color with an alpha channel for transparency. The output
is an Active pixels per line-by-Active video lines-by-Number of components
image matrix.

Data type
Output pixel data type. The default is uint8.

Video format
Dimensions of active and inactive regions of a video frame. To select a predefined
format, use the Video format list. For a custom format, select Custom, and then
specify the dimensions as integers. The frame dimensions are indicated in the
diagram.

1-44

 Frame To Pixels

Note: The sample time of your video source must match the total number of pixels in
the frame size you select in the Frame To Pixels block. Set the sample time to Total
pixels per line × Total lines.

Video

Format

Active

Pixels Per

Line

Active

Video

Lines

Total

Pixels Per

Line

Total

Video

Lines

Starting

Active

Line

Front

Porch

240p 320 240 402 324 1 44
480p 640 480 800 525 36 16
480pH 720 480 858 525 33 16
576p 720 576 864 625 47 12
720p 1280 720 1650 750 25 110

1-45

1 Blocks — Alphabetical List

Video

Format

Active

Pixels Per

Line

Active

Video

Lines

Total

Pixels Per

Line

Total

Video

Lines

Starting

Active

Line

Front

Porch

768p 1024 768 1344 806 10 24
1024p 1280 1024 1688 1066 42 48
1080p

(default)
1920 1080 2200 1125 42 88

1200p 1600 1200 2160 1250 50 64
2KCinema 2048 1080 2750 1125 42 639
4KUHDTV 3840 2160 4400 2250 42 88
8KUHDTV 7680 4320 8800 4500 42 88
Custom User-

defined
User-
defined

User-
defined

User-
defined

User-
defined

User-
defined

Note: When using a custom format, the values you enter for the active and inactive
dimensions of the image must add up to the total frame dimensions.

For the horizontal direction, Total pixels per line must be greater than or equal to
Front porch + Active pixels per line. The block calculates Back porch = Total
pixels per line − Front porch − Active pixels per line.

For the vertical direction, Total video lines must be greater than or equal to
Starting active line + Active video lines − 1. The block calculates Ending active
line = Starting active line + Active video lines − 1.

If you specify a format that does not conform to these rules, the block reports an
error.

Note: When using a custom format, Active pixels per line must be greater than 1.
Also, set the horizontal blanking interval, or Back porch + Front porch, according
to these guidelines.

• The total of Back porch + Front porch must be at least 2 times the largest
kernel size of the algorithm in the blocks following the Frame To Pixel block. If
the kernel size is < 4, the total porch must be at least 8 pixels.

1-46

 Frame To Pixels

• The Back porch must be at least 6 pixels. This parameter is the number of
inactive pixels before the first valid pixel in a frame.

See Also

See Also
visionhdl.FrameToPixels | Pixels To Frame

Topics
“Streaming Pixel Interface”

Introduced in R2015a

1-47

1 Blocks — Alphabetical List

Gamma Corrector
Apply or remove gamma correction

Library

visionhdlconversions

Description

Gamma Corrector applies or removes gamma correction on a stream of pixels. Gamma
correction adjusts linear pixel values so that the modified values fit a curve. The de-
gamma operation performs the opposite operation to obtain linear pixel values.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified as a scalar
value. The data type of the output is
the same as the data type of the input.

• uint8 or uint16
• int8 or int16
• fixdt(0,N,M), N + M ≤

16

1-48

 Gamma Corrector

Port Direction Description Data Type

double and single data
types are supported for
simulation but not for HDL
code generation.

ctrl Input/
Output

Control signals describing the validity
of the pixel and the location of the
pixel within the frame, specified as a
bus containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Parameters

Operation
Direction of pixel value adjustment.

• Gamma (default) — Apply gamma correction.
• De-gamma — Remove gamma correction.

Gamma
Target gamma value, specified as a scalar greater than or equal to 1.

• When you set Operation to Gamma, specify Gamma as the target gamma value of
the output video stream.

• When you set Operation to De-gamma, specify Gamma as the gamma value of
the input video stream.

The default value is 2.2.
Linear segment

Option to include a linear segment in the gamma curve. When you select this check
box, the gamma curve has a linear portion near the origin. By default, this check box
is selected.

Break point
Pixel value that corresponds to the point where the gamma curve and linear segment
meet. Specify Break point as a scalar value between 0 and 1, exclusive. This
parameter applies only when you select the Linear segment check box.

1-49

1 Blocks — Alphabetical List

The default value is 0.018.

Algorithm

For the equations used for gamma correction, see Gamma Correction in the Computer
Vision System Toolbox documentation.

To save hardware resources, the block implements the gamma correction equation as a
lookup table. The lookup table maps each input pixel value to a corrected output value.

Latency

The latency of the Gamma Corrector block is 2 cycles.

See Also

See Also
visionhdl.GammaCorrector | Frame To Pixels | Gamma Correction

Topics
“Gamma Correction”

Introduced in R2015a

1-50

 Grayscale Closing

Grayscale Closing
Morphological closing of grayscale pixel data

Library
visionhdlmorph

Description
The Grayscale Closing block performs morphological dilation, followed by morphological
erosion, using the same neighborhood for both calculations. The block operates on a
stream of pixel intensity values. You can specify a neighborhood, or structuring element,
of up to 32×32 pixels. For line, square, or rectangle structuring elements more than 8
pixels wide, the block uses the Van Herk algorithm to find the maximum and minimum.
For structuring elements less than 8 pixels wide, or that contain zero elements, the block
implements a pipelined comparison tree to find the maximum and minimum.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified as a
scalar value.

• uint8, uint16,uint32

1-51

1 Blocks — Alphabetical List

Port Direction Description Data Type

• fixdt(0,N,M)

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Parameters
Neighborhood

Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The block supports flat neighborhoods of up to 32×32 pixels. To use a structuring
element, specify the Neighborhood as getnhood(strel(shape)). The minimum
neighborhood size is a 2×2 matrix, or a 2×1 column vector. If the neighborhood is a
row vector, it must be at least 8 columns wide and contain no zeros.

The default is ones(3,3).
Line buffer size

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest
power of two. The block allocates (neighborhood lines – 1)-by-Line buffer size
memory locations to store the pixels. The default is 2048.

Algorithm

The closing algorithm is morphological dilation followed by morphological erosion. See
the Grayscale Dilation and Grayscale Erosion reference pages for the respective
kernel architectures.

1-52

 Grayscale Closing

The block pads the image with zeroes for the dilation operation, and with ones for the
erosion operation. See “Edge Padding”.

Latency

The total latency of the block is the line buffer latency plus the latency of the kernel
calculation. The line buffer latency includes edge padding. Morphological closing is a
compound operation. Therefore, this block contains a second line buffer between the
dilation kernel and the erosion kernel. You can monitor the number of timesteps between
the input control signals and the output control signals to determine the exact latency for
any configuration of the block.

The latency of a Van Herk kernel for a neighborhood of m×n pixels is 2m + log2(n). The
block implements this kernel for line, square, or rectangle structuring elements more
than 8 pixels wide, with no pixels set to zero.

The latency of a comparison tree kernel for a neighborhood of m×n pixels is
log2(m)+log2(n).

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

1-53

1 Blocks — Alphabetical List

See Also

See Also
visionhdl.GrayscaleClosing | Closing | Frame To Pixels | Grayscale Dilation |
Grayscale Erosion

Topics
“Morphological Dilation and Erosion” (Image Processing Toolbox)
“Structuring Elements” (Image Processing Toolbox)

Introduced in R2016a

1-54

 Grayscale Dilation

Grayscale Dilation

Morphological dilation of grayscale pixel data

Library

visionhdlmorph

Description

The Grayscale Dilation block performs morphological dilation on a stream of pixel
intensity values. You can specify a neighborhood, or structuring element, of up to 32×32
pixels. For line, square, or rectangle structuring elements more than 8 pixels wide, the
block uses the Van Herk algorithm to find the maximum. This algorithm uses only three
comparators to find the maximums of all the rows, then uses a comparison tree to find
the maximum of the row results.

For structuring elements less than 8 pixels wide, or that contain zero elements, the block
implements a pipelined comparison tree for each row of the neighborhood. An additional
comparison tree finds the maximum value of the row results. If the structuring element
contains zeros that mask off pixels, the algorithm saves hardware resources by not
implementing comparators for those pixel locations.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

1-55

1 Blocks — Alphabetical List

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified as a
scalar value.

• uint8, uint16,uint32
• fixdt(0,N,M)

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Parameters

Neighborhood
Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The block supports flat neighborhoods of up to 32×32 pixels. To use a structuring
element, specify the Neighborhood as getnhood(strel(shape)). The minimum
neighborhood size is a 2×2 matrix, or a 2×1 column vector. If the neighborhood is a
row vector, it must be at least 8 columns wide and contain no zeros.

The default is ones(5,5).
Line buffer size

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest
power of two. The block allocates (neighborhood lines – 1)-by-Line buffer size
memory locations to store the pixels. The default is 2048.

1-56

 Grayscale Dilation

Algorithm

The block pads the image with zeroes for the dilation operation. See “Edge Padding”.

Van Herk Implementation

For line, square, or rectangle structuring elements more than 8 pixels wide, the block
implements a Van Herk algorithm. All pixels in the structuring element must be set
to one. The block decomposes the structuring element into rows and serially finds the
maximum of each row using the Van Herk algorithm. If the size of the input frame is not
a multiple of m pixels, the line memory also adds horizontal padding to a multiple of m.
This implementation uses only 3 comparators total for all rows. Then, if there is more
than one row, it calculates the maximum of the row results using a comparison tree. The
diagram indicates the latency of each computation block.

The Van Herk kernel computes a running forward maximum and a running backwards
maximum on each row of the neighborhood. Therefore the pixels in the row must be
buffered and the order reversed. The buffer adds latency relative to the comparison
tree implementation. The Mirror Buffer is a ping-pong RAM of m pixels, where one
memory reads values in reverse order while the other is writing. The kernel uses 3+n-1
comparators.

1-57

1 Blocks — Alphabetical List

Comparison Tree Implementation

For structuring elements smaller than 8 pixels wide, or those with one or more pixels set
to zero, the block implements a comparison tree.

The diagram shows the architecture of the dilation operation. The algorithm finds the
maximum of each row of the neighborhood in parallel. Then it calculates the maximum
of the rows using another comparison tree. The diagram indicates the latency of each
computation block.

1-58

 Grayscale Dilation

For a rectangular neighborhood that is m pixels wide, the first-stage comparison trees
contain m – 1 comparators over log2(m) clock cycles. For instance, for a rectangular
neighborhood that is 7 pixels wide, the comparison tree has 6 comparators over 3 clock
cycles.

However, if the neighborhood you specify contains zeroes, the generated HDL excludes
the comparator for the zero locations. The pipeline delay through the comparison tree
does not change. For instance, for a nonrectangular neighborhood with a row of [0 0 1

1-59

1 Blocks — Alphabetical List

1 0 0 1], the comparison tree for that row contains 2 comparators and still uses 3 clock
cycles.

Latency

The latency of the operation is the line buffer latency plus the latency of the kernel
calculation. The line buffer latency includes edge padding.

The latency of a Van Herk kernel for a neighborhood of m×n pixels is 2m + log2(n). The
block implements this kernel for line, square, or rectangle structuring elements more
than 8 pixels wide, with no pixels set to zero.

The latency of a comparison tree kernel for a neighborhood of m×n pixels is
log2(m)+log2(n). The block implements this kernel for structuring elements smaller than
8 pixels wide, or those with one or more pixels set to zero.

1-60

 Grayscale Dilation

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

See Also

See Also
visionhdl.GrayscaleDilation | Dilation | Frame To Pixels | Grayscale Erosion

Topics
“Morphological Dilation and Erosion” (Image Processing Toolbox)
“Structuring Elements” (Image Processing Toolbox)

Introduced in R2016a

1-61

1 Blocks — Alphabetical List

Grayscale Erosion

Morphological erosion of grayscale pixel data

Library

visionhdlmorph

Description

The Grayscale Erosion block performs morphological erosion on a stream of pixel
intensity values. You can specify a neighborhood, or structuring element, of up to 32×32
pixels. For line, square, or rectangle structuring elements more than 8 pixels wide, the
block uses the Van Herk algorithm to find the minimum. This algorithm uses only three
comparators to find the minimums of all the rows, then uses a comparison tree to find the
minimum of the row results.

For structuring elements less than 8 pixels wide, or that contain zero elements, the block
implements a pipelined comparison tree for each row of the neighborhood. An additional
comparison tree finds the minimum value of the row results. If the structuring element
contains zeros that mask off pixels, the algorithm saves hardware resources by not
implementing comparators for those pixel locations.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

1-62

 Grayscale Erosion

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified as a
scalar value.

• uint8, uint16,uint32
• fixdt(0,N,M)

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Parameters

Neighborhood
Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The block supports flat neighborhoods of up to 32×32 pixels. To use a structuring
element, specify the Neighborhood as getnhood(strel(shape)). The minimum
neighborhood size is a 2×2 matrix, or a 2×1 column vector. If the neighborhood is a
row vector, it must be at least 8 columns wide and contain no zeros.

The default is ones(3,3).
Line buffer size

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest
power of two. The block allocates (neighborhood lines – 1)-by-Line buffer size
memory locations to store the pixels. The default is 2048.

1-63

1 Blocks — Alphabetical List

Algorithm

The block pads the image with ones for the erosion operation. See “Edge Padding”.

Van Herk Implementation

For line, square, or rectangle structuring elements more than 8 pixels wide, the block
implements a Van Herk algorithm. All pixels in the structuring element must be set
to one. The block decomposes the structuring element into rows and serially finds the
minimum of each row using the Van Herk algorithm. If the size of the input frame is not
a multiple of m pixels, the line memory also adds horizontal padding to a multiple of m.
This implementation uses only 3 comparators total for all rows. Then, if there is more
than one row, it calculates the minimum of the row results using a comparison tree. The
diagram indicates the latency of each computation block.

The Van Herk kernel computes a running forward minimum and a running backwards
minimum on each row of the neighborhood. Therefore the pixels in the row must be
buffered and the order reversed. The buffer adds latency relative to the comparison
tree implementation. The Mirror Buffer is a ping-pong RAM of m pixels, where one
memory reads values in reverse order while the other is writing. The kernel uses 3+n-1
comparators.

1-64

 Grayscale Erosion

Comparison Tree Implementation

For structuring elements smaller than 8 pixels wide, or those with one or more pixels set
to zero, the block implements a comparison tree.

The diagram shows the architecture of the erosion operation. The algorithm finds the
minimum of each row of the neighborhood in parallel. Then it calculates the minimum
of the rows using another comparison tree. The diagram indicates the latency of each
computation block.

1-65

1 Blocks — Alphabetical List

For a rectangular neighborhood that is m pixels wide, the first-stage comparison trees
contain m – 1 comparators over log2(m) clock cycles. For instance, for a rectangular
neighborhood that is 7 pixels wide, the comparison tree has 6 comparators over 3 clock
cycles.

However, if the neighborhood you specify contains zeroes, the generated HDL excludes
the comparator for the zero locations. The pipeline delay through the comparison tree
does not change. For instance, for a nonrectangular neighborhood with a row of [0 0 1

1-66

 Grayscale Erosion

1 0 0 1], the comparison tree for that row contains 2 comparators and still uses 3 clock
cycles.

Latency

The latency of the operation is the line buffer latency plus the latency of the kernel
calculation. The line buffer latency includes edge padding.

The latency of a Van Herk kernel for a neighborhood of m×n pixels is 2m + log2(n). The
block implements this kernel for line, square, or rectangle structuring elements more
than 8 pixels wide, with no pixels set to zero.

The latency of a comparison tree kernel for a neighborhood of m×n pixels is
log2(m)+log2(n). The block implements this kernel for structuring elements smaller than
8 pixels wide, or those with one or more pixels set to zero.

1-67

1 Blocks — Alphabetical List

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

See Also

See Also
visionhdl.GrayscaleErosion | Erosion | Frame To Pixels | Grayscale Dilation

Topics
“Morphological Dilation and Erosion” (Image Processing Toolbox)
“Structuring Elements” (Image Processing Toolbox)

Introduced in R2016a

1-68

 Grayscale Opening

Grayscale Opening
Morphological opening of grayscale pixel data

Library
visionhdlmorph

Description
The Grayscale Opening block performs morphological erosion, followed by morphological
dilation, using the same neighborhood for both calculations. The block operates on a
stream of pixel intensity values. You can specify a neighborhood, or structuring element,
of up to 32×32 pixels. For line, square, or rectangle structuring elements more than 8
pixels wide, the block uses the Van Herk algorithm to find the maximum and minimum.
For structuring elements less than 8 pixels wide, or that contain zero elements, the block
implements a pipelined comparison tree to find the maximum and minimum.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified as a
scalar value.

• uint8, uint16,uint32

1-69

1 Blocks — Alphabetical List

Port Direction Description Data Type

• fixdt(0,N,M)

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

Parameters
Neighborhood

Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The block supports flat neighborhoods of up to 32×32 pixels. To use a structuring
element, specify the Neighborhood as getnhood(strel(shape)). The minimum
neighborhood size is a 2×2 matrix, or a 2×1 column vector. If the neighborhood is a
row vector, it must be at least 8 columns wide and contain no zeros.

The default is ones(3,3).
Line buffer size

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest
power of two. The block allocates (neighborhood lines – 1)-by-Line buffer size
memory locations to store the pixels. The default is 2048.

Algorithm

The opening algorithm is morphological erosion followed by morphological dilation. See
the Grayscale Erosion and Grayscale Dilation reference pages for the respective
kernel architectures.

1-70

 Grayscale Opening

The line memory pads the image with zeroes for the dilation operation, and with ones for
the erosion operation. See “Edge Padding”.

Latency

The total latency of the block is the line buffer latency plus the latency of the kernel
calculation. The latency of the line memory includes edge padding. Morphological
opening is a compound operation. Therefore, this block contains a second line buffer
between the erosion kernel and the dilation kernel. You can monitor the number of
timesteps between the input control signals and the output control signals to determine
the exact latency for any configuration of the block.

The latency of a Van Herk kernel for a neighborhood of m×n pixels is 2m + log2(n). The
block implements this kernel for line, square, or rectangle structuring elements more
than 8 pixels wide, with no pixels set to zero.

The latency of a comparison tree kernel for a neighborhood of m×n pixels is
log2(m)+log2(n).

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

1-71

1 Blocks — Alphabetical List

See Also

See Also
visionhdl.GrayscaleOpening | Frame To Pixels | Grayscale Dilation |
Grayscale Erosion | Opening

Topics
“Morphological Dilation and Erosion” (Image Processing Toolbox)
“Structuring Elements” (Image Processing Toolbox)

Introduced in R2016a

1-72

 Histogram

Histogram

Frequency distribution

Library

visionhdlstatistics

Description

The Histogram block computes the frequency distribution of pixel values in a video
stream. You can configure the number and size of the bins. The block provides a read
interface for accessing each bin. The block keeps a running histogram until you reset the
bin values.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts a scalar pixel
value and a bus containing five control signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame. To convert a pixel matrix into a pixel
stream and these control signals, use the Frame To Pixels block. For a full description
of the interface, see “Streaming Pixel Interface”.

1-73

1 Blocks — Alphabetical List

Signal Attributes

Port Direction Description Data Type

pixel Input Single image pixel, specified as an
unsigned integer scalar.

• uint

• fixdt(0,N,0)

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

binAddr Input Bin number for reading histogram
values. The block captures this
value each cycle that readRdy is
true.

fixdt(0,N,0), N = 5,6,...,10.
Word length must be
log2(Number of bins).

binReset Input Triggers RAM initialization
sequence when true.

boolean

readRdy Output Indicates true when histogram is
ready for read.

boolean

hist Output Histogram value corresponding to
a binAddr request, returned as a
scalar.

fixdt(0,N,0)

double and single data types
are supported for simulation but
not for HDL code generation.

validOut Output Indicates true when hist is
available.

boolean

Parameters

Number of bins
Number of bins for the histogram.

1-74

 Histogram

Choose the number of bins depending on the input word length (WL). If the number
of bins is less than 2WL, the block truncates the least-significant bits of each pixel. If
the number of bins is greater than 2WL, the block warns about an inefficient use of
hardware resources. The default is 256.

Data type
Data type of the histogram bin values.

• double

• single

• Unsigned fixed point (default)

double and single data types are supported for simulation but not for HDL code
generation.

Word length
Word length of the histogram bins when Data type is Unsigned fixed point. If a
bin overflows, the count saturates and the block shows a warning. The default is 16.

Algorithm

RAM Reset and Ready Sequence

At startup, you must wait Number of bins cycles for the block to reset the RAM, before
sending input data. This initial reset happens without asserting binReset.

You cannot read histogram bins and apply pixel data at the same time. When you want
to read the bin values, wait for readRdy and then apply each bin address of interest. The
block provides the corresponding histogram values on the hist port, with accompanying
validOut signal.

The histogram values persist and accumulate across frames until you assert binReset.
When you assert binReset, the block takes Number of bins cycles to clear the RAM
and be ready for new input. Other input signals are ignored during reset.

The diagram shows an overview of the reset sequence. vStart and vEnd are control
signals in the pixelcontrol input bus.

1-75

1 Blocks — Alphabetical List

The diagram shows the automatic startup reset, followed by a frame of video input. The
read window starts when readReady is asserted. The binReset signal initiates a bin
reset. The next input frame is not applied until after the reset is complete.

The diagram illustrates a bin read sequence. vEnd is a control signal in the
pixelcontrol input bus. validOut indicates when the bin values on hist are
available.

After the last pixel of a video frame, indicated by vEnd = true, the block asserts
readRdy to show that the histogram is ready for reading. Two cycles after applying a

1-76

 Histogram

bin address, the block provides the value of that bin on hist, with a corresponding valid
signal. You can request the last bin address and assert binReset at the same time.

Latency

The block sets readRdy to true 2 cycles after receiving the last pixel of a frame. The
input pixelcontrol bus indicates the last pixel of a frame by vEnd = true. While
readRdy is true, the block captures binAddr requests on each cycle. The block provides
the corresponding histogram bin values on hist two cycles later.

See Also

See Also
visionhdl.Histogram | 2-D Histogram | Frame To Pixels | imhist

Topics
“Histogram Equalization”

Introduced in R2015a

1-77

1 Blocks — Alphabetical List

Image Filter
2-D FIR filtering

Library

visionhdlfilter

Description

The Image Filter block performs two-dimensional FIR filtering on a pixel stream.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input Single pixel, specified as a scalar
value.

• uint or int
• fixdt()

double and single data types
are supported for simulation but
not for HDL code generation.

1-78

 Image Filter

Port Direction Description Data Type

ctrl Input/
Output

Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

pixel Output Single pixel, returned as a scalar
value. You can specify the output
data type in the block dialog box.

• uint or int
• fixdt()

double and single data types
are supported for simulation but
not for HDL code generation.

Parameters

Main

Filter coefficients
Coefficients of the filter, specified as a vector or matrix of any numeric type.

The maximum size along any dimension of a matrix or vector is 16.
Padding method

Method for padding the boundary of the input image. See “Edge Padding”.

• Constant (default) — Interpret pixels outside the image frame as having a
constant value.

• Replicate — Repeat the value of pixels at the edge of the image.
• Symmetric — Pad the input matrix with its mirror image.

Padding value
Constant value used to pad the boundary of the input image.

This parameter is visible when you set Padding method to Constant. The block
casts this value to the same data type as the input pixel. The default value is 0.

1-79

1 Blocks — Alphabetical List

Line buffer size
Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest
power of two. The block allocates (coefficient rows – 1)-by-Line buffer size memory
locations to store the pixels. The default value is 2048.

Data Types

Rounding mode
Rounding mode for internal fixed-point calculations. The default is Floor.

Overflow mode
Overflow mode for internal fixed-point calculations. The default is Wrap.

Coefficients Data Type
Method for determining the data type of the filter coefficients.

The default is Inherit: Same as first input.

When converting the coefficients to this data type, the block always uses Saturate
overflow mode and Nearest rounding mode.

Output Data Type
Method for determining the data type of the output pixels.

The default is Inherit: Same as first input.
Lock data type settings against changes by the fixed-point tools

Select to lock all data type settings of this block against changes by the Fixed-Point
Tool and the Fixed-Point Advisor. For more information, see “Lock the Output Data
Type Setting” (Fixed-Point Designer) in the Fixed-Point Designer™ documentation.

Algorithm

The block implements the filter with a fully-pipelined architecture. Each multiplier has
two pipeline stages on each input and two pipeline stages on each output. The adder is a
pipelined tree structure. HDL code generation takes advantage of symmetric, unity, or
zero-value coefficients to reduce the number of multipliers.

1-80

 Image Filter

You can optimize the multipliers for HDL code generation using canonical signed digit
(CSD) or factored CSD. Right-click the block, select HDL Code > HDL Properties, and
set the ConstMultiplierOptimization parameter to csd or fcsd.

Latency

The latency of the block is the line buffer latency plus the latency of the kernel
calculation. The line buffer latency includes edge padding. To determine the exact latency
for any configuration of the block, you can measure the number of time steps between the
input control signals and the output control signals .

The latency of the kernel varies depending on the coefficients you choose.

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

See Also

See Also
visionhdl.ImageFilter | 2-D FIR Filter | Frame To Pixels

1-81

1 Blocks — Alphabetical List

Introduced in R2015a

1-82

 Image Statistics

Image Statistics
Mean, variance, and standard deviation

Library
visionhdlstatistics

Description
The Image Statistics block calculates the mean, variance, and standard deviation of
streaming video data. Each calculation is performed over all pixels in the input region
of interest (ROI). The block implements the calculations using hardware-efficient
algorithms.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts a scalar pixel
value and a bus containing five control signals. These signals indicate the validity of each
pixel and the location of each pixel in the frame. To convert a pixel matrix into a pixel
stream and these control signals, use the Frame To Pixels block. For a full description
of the interface, see “Streaming Pixel Interface”.

• To change the size and dimensions of the ROI, you can manipulate the input video
stream control signals. See “Regions of Interest” on page 1-90.

• The number of valid pixels in the input image affects the accuracy of the mean
approximation. To avoid approximation error, use an image that contains fewer
than 64 pixels, a multiple of 64 pixels up to 642 pixels, a multiple of 642 pixels up

1-83

1 Blocks — Alphabetical List

to 643 pixels, or a multiple of 643 pixels up to 644 pixels. For details of the mean
approximation, see “Algorithm” on page 1-85.

• The block calculates statistics over frames up to 644 (16,777,216) pixels in size. This
size supports HD frames.

Signal Attributes

Port Direction Description Data Type

pixel Input Single image pixel specified as a
scalar value.

• uint8/uint16

• fixdt(0,N,0), N = 8,9,...,16

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

pixelcontrol

mean Output Mean of the most recent input
frame completed.

Same as pixel

var Output Variance of the most recent input
frame completed.

Same as pixel

stdDev Output Standard deviation of the most
recent input frame completed.

Same as pixel

validOut Output Computations completed. The
block sets this output to true
when the statistic outputs for a
frame are ready.

boolean

Note: The block uses full-precision arithmetic for internal calculation. At the output,
intermediate data is cast back to the input type using the following fixed-point settings:
RoundingMethod = Nearest, and OverflowAction = Saturate. The table shows the
output word length for each calculation, relative to the input word length (IWL).

1-84

 Image Statistics

Mean Variance Std. Deviation

IWL 2×IWL 2×IWL

Parameters

Enable mean output
Select this check box to calculate the mean of each input frame. If you clear this
check box, the mean output does not show on the block.

Enable variance output
Select this check box to calculate the variance of each input frame. If you clear this
check box, the var output does not show on the block.

Enable std. deviation
Select this check box to calculate the standard deviation of each input frame. If you
clear this check box, the stdDev output does not show on the block.

Algorithm

Architecture

The calculations of mean, variance, and standard deviation build off each other. For
hardware efficiency, the calculation logic is shared as shown.

1-85

1 Blocks — Alphabetical List

Mean

The equation to calculate the precise mean pixel value requires large internal word
lengths and expensive division logic.

m =
*

==

ÂÂ
1

11
M N

xij

j

N

i

M

Instead of using this equation, the block calculates the mean by a series of four
accumulators that compute the mean of a segment of pixels. First, find the sum of a
window of 64 pixels, and normalize.

m
L n

n

x
1

1

64
1

64

=
=

Â

Then accumulate 64 of the previous windows, and normalize.

m m
L nL

n
2 1

1

64
1

64

=
=
Â

A third accumulator sums 64 of the 64×64 windows, and normalizes the same way.

1-86

 Image Statistics

m m
L nL

n
3 2

1

64
1

64

=
=
Â

The fourth accumulator sums 64 of the 64×64×64 windows and normalizes.

m m
L nL

n
4 3

1

64
1

64

=
=

Â

Each valid pixel is accumulated as it arrives. Its location within a line or frame does not
affect the accumulation logic.

When vEnd is received, the block promotes any remaining data in the four levels of mean
calculation to calculate the final output. If an accumulator counter is not at 64 when
vEnd arrives, that level normalizes by the actual value of the counter. The constants for
this multiplication are in a lookup table (LUT). The four accumulators share a single
LUT and multiplier.

1-87

1 Blocks — Alphabetical List

This method of mean calculation is accurate when the number of pixels in the frame
aligns vEnd with the final accumulator rollover. This alignment occurs at level two when
the frame contains a multiple of 64 pixels, and fewer than 642(4096) pixels. It occurs at
level three when the frame contains a multiple of 4096 pixels. It occurs at level four when
the frame contains a multiple of 643 pixels. This method is also accurate when the frame
has fewer than 64 pixels, because only the first accumulator is needed.

However, when the number of pixels in the frame does not fit these conditions, the block
must normalize the final accumulation before the counter reaches 64. This introduces
an error in the normalization calculation at subsequent levels. The figure shows the
normalization error introduced in the mean calculation by image sizes under 4096 pixels.
The spikes occur where an image size is just over a multiple of 64 pixels.

For images larger than 4096 pixels, the same effect occurs at multiples of 4096 pixels,
and at multiples of 643 pixels.

1-88

 Image Statistics

Variance

The block calculates variance of the input pixels using the following equation.

s m2 2

11

21
= -

==

ÂÂ(
*

)
M N

xij

j

N

i

M

The mean and the mean of the squared input are calculated in parallel. The block
calculates the mean of squares using the same approximation method used to calculate
the mean, as described in the previous section.

1-89

1 Blocks — Alphabetical List

Standard Deviation

The block calculates the square root of the variance using a pipelined bit-set-and-check
algorithm. This algorithm computes the square root using addition and shifts rather than
multipliers. For an N-bit input, the result has N bits of accuracy.

This method is hardware efficient for general inputs. If your data has known
characteristics that allow for a more efficient square root implementation, you can
disable the calculation in this block and construct your own logic from HDL-supported
blocks.

Regions of Interest

Statistics are often calculated on small regions of interest (ROI) rather than an entire
video frame. This block performs calculations on all valid pixels between vStart and
vEnd signals in the ctrl bus, and does not track pixel location within the frame. You
can manipulate the streaming control signals to reduce the size of a frame and delineate
the boundaries of a region of interest before passing the video stream to this block.
For an example that selects multiple small ROIs from a larger image, see “Multi-Zone
Metering”.

The Image Statistics block calculates statistics over frames up to 644 (16,777,216) pixels
in size. If you provide an image with more than 644 pixels, the block calculates the
requested statistics on only the first 16,777,216 pixels and then asserts validOut. The
block ignores extra pixels until it receives a vEnd signal.

Latency

The latency from vEnd to validOut depends on the calculations you select.

When the block receives a vEnd signal that is true, it combines the remaining data in
the four levels of mean calculation to calculate the final output. This final step takes 4
cycles per level, resulting in a maximum of 16 cycles of latency between the input vEnd
signal and the validOut signal. Once the mean is available, the variance calculation
takes 4 cycles. The square root logic requires input word length (IWL) cycles of latency.

If a calculation is not selected, and is not needed for other selected calculations, that logic
is excluded from the generated HDL code.

The table shows the calculation logic and latency for various block configurations.

1-90

 Image Statistics

MeanVarianceStd.
Deviation

Logic Excluded From
HDL

Latency (cycles)

✓ ✓ ✓ [4n]+4+IWL, (where n is the number of
accumulator levels required for the input size)

✓ variance and square
root

[4n]

 ✓ square root [4n]+4
 ✓ [4n]+4+IWL
✓ ✓ square root [4n]+4
✓ ✓ [4n]+4+IWL
 ✓ ✓ [4n]+4+IWL

Note: There must be at least 16 cycles between the vEnd signals on the input. This
timing restriction enables the block to finish processing the current frame before the new
one arrives.

If you are using a custom video format, set the horizontal blanking interval using the
parameters of the Frame To Pixels block. The horizontal blanking interval is equal to
Total pixels per line – Active pixels per line, or, equivalently, Front porch + Back
porch. Standard streaming video formats use a horizontal blanking interval of about
25% of the frame width. This interval is much larger than the latency of the statistics
operations.

See Also

See Also
visionhdl.ImageStatistics | 2-D Standard Deviation | 2-D Mean | 2-D Variance | Frame
To Pixels

Topics
“Multi-Zone Metering”

Introduced in R2015a

1-91

1 Blocks — Alphabetical List

Lookup Table
Map input pixel to output pixel using custom rule

Library

visionhdlconversions

Description

The Lookup Table block provides a custom one-to-one map between input pixel values
and output pixel values.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input Single image pixel, specified as a scalar
value.

• boolean

• uint8 or uint16
• fixdt(0,N,M), N +

M ≤ 16

1-92

 Lookup Table

Port Direction Description Data Type

ctrl Input/Output Control signals describing the validity
of the pixel and the location of the
pixel within the frame, specified as a
bus containing five signals. See “Pixel
Control Bus”.

pixelcontrol

pixel Output Single image pixel, returned as a scalar
value.

Specified by Table data.

double and single data
types are supported for
simulation but not for
HDL code generation.

Parameters
Table data

Determines the one-to-one correspondence between an input pixel value and an
output pixel value.

• The table data is a row or column vector of any data type. The data type of the
table data determines that of the output pixel.

• The length of the vector must be 2WordLength, where WordLength is the size, in bits,
of the input pixel.

• The smallest representable value of the input data type maps to the first element
of the table, the second smallest value maps to the second element, and so on. For
example, if the input pixel has a data type of fixdt(0,3,1), the input value 0
maps to the first element of the table, 0.5 maps to the second element, 1 maps to
the third, and so on.

The default value is uint8(0:1:255).

Algorithm

Latency

The latency of the Lookup Table block is 2 cycles.

1-93

1 Blocks — Alphabetical List

See Also

See Also
visionhdl.LookupTable | Frame To Pixels

Introduced in R2015a

1-94

 Measure Timing

Measure Timing

Measure timing of pixel control bus input

Library

visionhdlutilities

Description

The Measure Timing block measures the timing parameters of a video stream. The
Vision HDL Toolbox streaming pixel protocol implements the timing of a video system,
including inactive intervals between frames. These inactive intervals are called blanking
intervals. Many Vision HDL Toolbox blocks require minimum blanking intervals. You
can use the timing parameter measurements from this block to check that your video
stream meets these requirements. If you manipulate the control signals of your video
stream, you can use this block to verify the resulting signals.

To determine the parameters of each frame, the block measures the time steps between
the control signals on the bus.

1-95

1 Blocks — Alphabetical List

• 1 — Active pixels per line
• 2 — Active lines per frame (count hStart pulses)
• 3 — Total pixels per line
• 4 — Total lines per frame (cycles divided by total pixels per line)
• 5 — Horizontal blanking
• 6 — Vertical blanking (cycles, minus horizontal blanking, divided by total pixels per

line)

For details on the pixel control bus and the dimensions of a video frame, see “Streaming
Pixel Interface”.

Note: Measurements from the first simulated frame are incorrect because some
parameters require measurements between frames. Simulate at least two frames before
using the results.

Signal Attributes

Port Direction Description Data Type

ctrl Input Control signals
describing the
validity of the pixel
and the location of
the pixel within the
frame, specified as a
bus containing five
signals. See “Pixel
Control Bus”.

pixelcontrol

activePixels Output Number of pixels
in each line of

uint32

1-96

 Measure Timing

Port Direction Description Data Type

the active video
frame. This value is
measured between
hStart and hEnd.
See marker 1 in the
diagram.

activeLines Output Number of lines
in the active video
frame. This value
is measured by
counting hStart
pulses between
vStart and vEnd.
See marker 2 in the
diagram.

uint32

totalPixels Output Number of pixels in
each line, including
the horizontal
blanking interval.
This value is
measured between
hStart and the next
hStart. See marker
3 in the diagram.

uint32

totalLines Output Number of lines in
the frame, including
the vertical blanking
interval. This value
is measured between
vStart and the next
vStart, divided
by totalPixels.
See marker 4 in the
diagram.

uint32

1-97

1 Blocks — Alphabetical List

Port Direction Description Data Type

horizBlank Output Number of inactive
pixels between lines
of a frame. This
value is measured
between hEnd and
the next hStart.
See marker 5 in the
diagram.

uint32

vertBlank Output Number of inactive
lines between
frames. This
value is measured
between vEnd and
the next vStart,
adjusted to remove
horizBlank, and
then divided by
totalPixels. See
marker 6 in the
diagram.

uint32

See Also

See Also
visionhdl.MeasureTiming | Frame To Pixels

Topics
“Streaming Pixel Interface”

Introduced in R2016b

1-98

 Median Filter

Median Filter
2-D median filtering

Library

visionhdlfilter

Description

Median Filter replaces each pixel with the median value of the surrounding N-by-N
neighborhood. The median is less sensitive to extreme values than the mean. Use this
block to remove salt-and-pepper noise from an image without significantly reducing the
sharpness of the image. You can specify the neighborhood size and the padding values for
the edges of the input image.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input/Output Single image pixel, specified as
a scalar integer value. The data

• uint or int
• fixdt(~,N,0)

1-99

1 Blocks — Alphabetical List

Port Direction Description Data Type

type of the output is the same as
the data type of the input.

• boolean

double and single data types
are supported for simulation but
not for HDL code generation.

ctrl Input/Output Control signals describing the
validity of the pixel and the
location of the pixel within
the frame, specified as a bus
containing five signals. See
“Pixel Control Bus”.

pixelcontrol

Parameters

Neighborhood size
Size in pixels of the image region used to compute the median.

• 3×3 (default)
• 5×5

• 7×7

Padding method
Method for padding the boundary of the input image. See “Edge Padding”.

• Constant — Pad input matrix with a constant value.
• Replicate — Repeat the value of pixels at the edge of the image.
• Symmetric (default) — Pad image edge with its mirror image.

Padding value
Constant value used to pad the boundary of the input image.

This parameter is visible when you set Padding method to Constant. The block
casts this value to the same data type as the input pixel. The default value is 0.

Line buffer size
Size of the line memory buffer, specified as a scalar integer.

1-100

 Median Filter

Choose a power of 2 that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. The block allocates N - 1-by-Line buffer size memory locations to
store the pixels used to compute the median value. N is the dimension of the square
region specified in Neighborhood size. The default value is 2048.

Algorithm

Latency

The latency of the block is the line buffer latency plus the latency of the kernel
calculation. The line buffer latency includes edge padding. To determine the exact latency
for any configuration of the block, you can measure the number of time steps between the
input control signals and the output control signals .

The latency of the filter kernel depends on the neighborhood size as shown in the table.

Neighborhood size # of Comparisons to Find Median

3×3 11
5×5 75
7×7 230

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The

1-101

1 Blocks — Alphabetical List

horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

See Also

See Also
visionhdl.MedianFilter | Frame To Pixels | Median Filter

Introduced in R2015a

1-102

 Opening

Opening
Morphological opening of binary pixel data

Library

visionhdlmorph

Description

The Opening block performs morphological erosion, followed by morphological dilation,
using the same neighborhood for both calculations. The block operates on a stream of
binary intensity values.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

Port Direction Description Data Type

pixel Input/
Output

Single image pixel, specified as a
scalar binary value.

boolean

ctrl Input/
Output

Control signals describing the
validity of the pixel and the

pixelcontrol

1-103

1 Blocks — Alphabetical List

Port Direction Description Data Type

location of the pixel within
the frame, specified as a bus
containing five signals. See “Pixel
Control Bus”.

Parameters

Neighborhood
Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The block supports neighborhoods of up to 32×32 pixels. To use a structuring
element, specify Neighborhood as getnhood(strel(shape)).

The default is [0,1,0;1,1,1;0,1,0].
Line buffer size

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest
power of two. The block allocates (neighborhood lines – 1)-by-Line buffer size
memory locations to store the pixels. The default is 2048.

Algorithm

The block pads the image with zeroes for the dilation operation, and with ones for the
erosion operation. See “Edge Padding”.

Latency

The total latency of the block is the line buffer latency plus the latency of the kernel
calculation. Morphological opening is a compound operation. Therefore, this block
contains a second line buffer between the erosion kernel and the dilation kernel. To
determine the exact latency for any configuration of the block, monitor the number of
time steps between the input control signals and the output control signals.

1-104

 Opening

The latency of the line memory includes edge padding. The latency of the kernel depends
on the neighborhood size.

Note: The horizontal blanking interval of the pixel stream format must be greater than
the latency of the block. This interval enables the block to finish processing one line
before it starts processing the next one. If you are using a custom video format, set
the horizontal blanking interval using the Frame To Pixels block parameters. The
horizontal blanking interval is equal to Total pixels per line – Active pixels per line,
or, equivalently, Front porch + Back porch. Standard streaming video formats use
a horizontal blanking interval of about 25% of the frame width. This interval is much
larger than the filters applied to each frame.

See Also

See Also
visionhdl.Opening | Closing | Dilation | Erosion | Frame To Pixels | Opening

Topics
“Morphological Dilation and Erosion” (Image Processing Toolbox)
“Structuring Elements” (Image Processing Toolbox)

Introduced in R2015a

1-105

1 Blocks — Alphabetical List

Pixel Control Bus Creator
Create control signal bus for use with Vision HDL Toolbox blocks

Library

visionhdlutilities

Description

The Pixel Control Bus Creator block creates a pixelcontrol bus. See “Pixel Control
Bus”.

The block is an implementation of the Simulink Bus Creator block. See Bus Creator for
more information.

See Also

See Also
“Streaming Pixel Interface” | Frame To Pixels | Pixels To Frame

Introduced in R2015a

1-106

 Pixel Control Bus Selector

Pixel Control Bus Selector
Select signals from control signal bus used by Vision HDL Toolbox blocks

Library

visionhdlutilities

Description

The Pixel Control Bus Selector block selects signals from the pixelcontrol bus. See
“Pixel Control Bus”.

The block is an implementation of the Simulink Bus Selector block. See Bus Selector for
more information.

See Also

See Also
“Streaming Pixel Interface” | Frame To Pixels | Pixels To Frame

Introduced in R2015a

1-107

1 Blocks — Alphabetical List

Pixels To Frame
Convert pixel stream to frame-based video

Library
visionhdlio

Description
The Pixels To Frame block converts a color or grayscale pixel stream and control signals
to frame-based video. The control signal bus indicates the validity of each pixel and its
location within the frame. The pixel stream format can include padding pixels around
the active frame. You can configure the frame and padding dimensions by selecting a
common video format or specifying custom dimensions. See “Streaming Pixel Interface”
for details of the pixel stream format.

Use this block to convert the output of a subsystem targeted for HDL code generation
back to frames. This block does not support HDL code generation.

If your model converts frames to a pixel stream and later converts the stream back to
frames, specify the same video format for the Frame To Pixels block and the Pixels To
Frame block.

Signal Attributes

The Pixels To Frame block has the following input and output ports.

Port Direction Description Data Type

pixel Input Single image pixel specified by
a vector of 1-by-Number of
components values.

• uint or int
• fixdt()

1-108

 Pixels To Frame

Port Direction Description Data Type

• boolean

• double or single
ctrl Input Control signals describing the

validity of the pixel and the location
of the pixel within the frame,
specified as a bus containing five
signals. See “Pixel Control Bus”.

pixelcontrol

frame Output Full image returned as a Active
pixels per line-by-Active video
lines-by-N matrix. Height and width
are the dimensions of the active
image specified in Video format. N
is the Number of components used
to express a single pixel.

Same as pixel

validOut Output True when the output frame is
successfully recompiled from the
input stream.

boolean

Parameters

Number of components
Component values of each pixel. The pixel can be represented by 1, 2, 3, or 4
components. Set to 1 for grayscale video. Set to 3 for color video, for example, {R,G,B}
or {Y,Cb,Cr}. Set to 4 to use color with an alpha channel for transparency. The output
is an Active pixels per line-by-Active video lines-by-Number of components
image matrix.

Video format
Dimensions of active and inactive regions of a video frame. To select a predefined
format, use the Video format pull-down menu. For a custom format, select Custom,
then specify the dimensions as integers.

Video Format Active Pixels

Per Line

Active Video Lines

240p 320 240

1-109

1 Blocks — Alphabetical List

Video Format Active Pixels

Per Line

Active Video Lines

480p 640 480
480pH 720 480
576p 720 576
720p 1280 720
768p 1024 768
1024p 1280 1024
1080p (default) 1920 1080
1200p 1600 1200
2KCinema 2048 1080
4KUHDTV 3840 2160
8KUHDTV 7680 4320
Custom User-

defined
User-
defined

See Also

See Also
visionhdl.PixelsToFrame | Frame To Pixels

Topics
“Streaming Pixel Interface”

Introduced in R2015a

1-110

 ROI Selector

ROI Selector

Select a region of interest (ROI) from pixel stream

Library

visionhdlutilities

Description

The ROI Selector block selects a portion of the active frame from a video stream. The
total size of the frame remains the same. The control signals indicate a new active region
of the frame. The diagram shows the inactive pixel regions in blue and the requested
output region outlined in orange.

1-111

1 Blocks — Alphabetical List

You can specify a fixed size and location for the new frame, or select the frame location in
real time via an input port. You can select more than one region. Define each region by
the upper-left corner coordinates and the dimensions. The block returns one set of pixels
and control signals for each region you specify. The block sets the inactive pixels in the
output frame to zero.

Regions are independent from each other, so they can overlap. If you specify a region
that includes the edge of the active frame, the block returns only the active portion of the
region. The diagram shows the output frames for three requested regions. The second
output region (treetops) does not include the inactive region above the frame.

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns

1-112

 ROI Selector

a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Signal Attributes

The diagram shows the additional ports on the block when you select three regions. The
regionN input ports are optional.

Port Direction Description Data Type

pixel Input Single image pixel,
specified as a scalar
value.

Any numeric data
type

double and single
data types are
supported for
simulation but
not for HDL code
generation.

ctrl Input Control signals
describing the
validity of the pixel
and the location of
the pixel within the
frame, specified as a
bus containing five
signals. See “Pixel
Control Bus”.

pixelcontrol

1-113

1 Blocks — Alphabetical List

Port Direction Description Data Type

region1,...,regionNInput Region of interest,
specified as vectors
of positive integers
that define the
coordinates of the
top-left corner, and
the dimensions, of
each desired output
frame, [hPos vPos
hSize vSize]. The
block has N region
ports, where N is
the Number of
regions.

1-by-4 vector of
positive integers

pixel1,...,pixelNOutput Output image pixels,
specified as scalar
values. The block
has N output pixel
ports, where N is
the Number of
regions, or the
size of the Regions
matrix.

Same data type as
the input pixel port

ctrl1,...,ctrlN Output Control signals,
specifies as busses
of five signals each.
The block has N
output control
ports, where N is
the Number of
regions, or the
size of the Regions
matrix.

pixelcontrol

1-114

 ROI Selector

Parameters
Regions source

Location of the output region definitions

Select Property to specify the region(s) in the Regions mask parameter. Select
Input port to specify the region(s) on input ports. There is one input port for each
region. The block samples the region input ports when vStart is set in the input
control bus.

Regions
Rectangular regions of interest to select from the input frame, specified as a N-by-4
matrix.

N is the number of regions. You can select up to 16 regions. The four elements that
define each region are the top-left starting coordinates and the dimensions, [hPos
vPos hSize vSize]. The coordinates count from the upper left corner of the active
frame, defined as [1,1]. hSize must be greater than 1. The regions are independent
of each other, so they can overlap. This parameter applies when you set Regions
source to Property.

Number of regions
Number of region input ports, specified as an integer from 1 to 16.

This parameter applies when you set Regions source to Input port.

Algorithm
The generated HDL code for the ROI Selector block uses two 32-bit counters. It does not
use additional counters for additional regions.

Latency

The block has a latency of three cycles.

See Also

See Also
visionhdl.ROISelector | Frame To Pixels

1-115

1 Blocks — Alphabetical List

Introduced in R2016a

1-116

 Pixel Stream Aligner

Pixel Stream Aligner

Align two streams of pixel data
Library: Vision HDL Toolbox / Utilities

Description

The Pixel Stream Aligner block synchronizes two pixel streams by delaying one stream to
match the timing of a reference stream. Many Vision HDL Toolbox algorithms delay the
pixel stream, and the amount of delay can change as you adjust algorithm parameters.
You can use this block to align streams for overlaying, comparing, or combining two
streams such as in a Gaussian blur operation. Connect the delayed stream to the
refPixel and refCtrl input ports, and the earlier stream to the pixel and ctrl input
ports.

This waveform diagram shows the input streams, pixelIn and refPixelIn, and their
associated control signals. The reference input frame starts later than the pixelIn
frame. The output signals show that the block delays pixelIn to match the reference
stream, and that both output streams share control signals. There is a short latency
between the input refCtrl and the output refCtrl. In this simulation, to accommodate
the delay of four lines between the input streams, the MaxNumberOfLines must be set to
at least 4.

1-117

1 Blocks — Alphabetical List

This block uses a streaming pixel interface with a bus for synchronization control signals.
This interface enables the block to operate independently of image size and format, and
to connect easily with other Vision HDL Toolbox blocks. The block accepts and returns
a scalar pixel value and a bus containing five control signals. These signals indicate
the validity of each pixel and the location of each pixel in the frame. To convert a pixel
matrix into a pixel stream and these control signals, use the Frame To Pixels block.
For a full description of the interface, see “Streaming Pixel Interface”.

Ports

Input

pixel — Input pixel stream
scalar | vector

Single image pixel, specified as a vector of three values representing R'G'B' or Y'CbCr,
or a scalar value representing intensity. The block delays this pixel stream to match the
control signals of the reference stream, refPixel. Therefore, pixel must be the earlier of
the two streams.

1-118

 Pixel Stream Aligner

double and single data types are supported for simulation but not for HDL code
generation.
Data Types: fixed_point | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | double | single

ctrl — Control signals accompanying input pixel stream
pixelcontrol bus

Control signals describing the validity of the pixel and the location of the pixel within the
frame, specified as a bus containing five signals. See “Pixel Control Bus”.
Data Types: bus

refPixel — Reference pixel stream
scalar | vector

Single image pixel, specified as a vector of three values representing R'G'B' or Y'CbCr, or
a scalar value representing intensity. The block delays the pixel input stream to match
the reference control signals. Therefore, refPixel must be the later of the two streams.
The reference data and its control signals pass through the block with a small delay.

double and single data types are supported for simulation but not for HDL code
generation.
Data Types: fixed_point | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | double | single

refCtrl — Reference control signals, accompanying reference pixel stream
pixelcontrol bus

Control signals describing the validity of the pixel and the location of the pixel within the
frame, specified as a bus containing five signals. See “Pixel Control Bus”.

The block uses these control signals for the aligned output stream.
Data Types: bus

Output

pixel — Aligned pixel stream
scalar | vector

1-119

1 Blocks — Alphabetical List

Single image pixel, returned as a vector of three values representing R'G'B' or Y'CbCr, or
a scalar value representing intensity. The data type is the same as the data type of the
pixel input stream.

refPixel — Reference pixel stream
scalar | vector

Single image pixel, specified as a vector of three values representing R'G'B' or Y'CbCr, or
a scalar value representing intensity. The data type is the same as the data type of the
refPixel input stream. This stream is passed through the block unchanged.

refCtrl — Reference control signals
pixelcontrol bus

The input refCtrl signals pass through the block with a small delay.

Parameters

Line buffer size — Size of the line memory buffer
2048 (default) | scalar integer

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the block uses the next largest
power of two. The block implements a circular buffer of 2M pixels, where M is
MaxNumberOfLines + log2(LineBufferSize).

Maximum number of lines — Buffer depth that accommodates the timing offset between
input streams
10 (default) | scalar integer

The block implements a circular buffer of 2M pixels, where M is MaxNumberOfLines
+ log2(LineBufferSize), and a line address buffer of MaxNumberofLines locations. The
circular memory stores the earlier input lines until the reference control signals arrive.
The line address buffer stores the address of the start of each line. When the reference
control signals arrive, the block uses the stored address to read and send the delayed
line. This parameter must accommodate the difference in timing between the two
input streams, including internal latency before the block reads the first line. During
simulation, the block warns when an overflow occurs. To avoid the overflow condition,
increase MaxNumberofLines. The delay between streams cannot exceed an entire frame.

1-120

 Pixel Stream Aligner

Model Examples

Algorithms

The block stores the data from the pixel port to a circular buffer, and reads the lines
out to align with the reference control signals. The block also stores the address of the
start of each line. To match the added processing delay of the buffer data path, the block
delays the reference pixel data and control signals for around 10 cycles.

The RAM Circular Buffer is a memory of 2M pixels, where M is MaxNumberOfLines
+ log2(LineBufferSize). The Line Address Buffer has MaxNumberOfLines locations. If
the number of ctrl.Hstart assertions before the first refCtrl.Hstart assertion is
greater than the size of the Line Address Buffer, the block overwrites both buffers and
corrupts your output. In this diagram, MaxNumberOfLines is four, so there are four
locations to store a line address in the buffer. The diagram also shows a single location
to store ctrl.Vstart. The delay between the two streams must be less than the time
between frame starts.

1-121

1 Blocks — Alphabetical List

See Also

See Also

Blocks
Frame To Pixels

System Objects
visionhdl.PixelStreamAligner

Introduced in R2017a

1-122

2

System Objects — Alphabetical List

2 System Objects — Alphabetical List

visionhdl.ChromaResampler System object
Package: visionhdl

Downsample or upsample chrominance component

Description

visionhdl.ChromaResampler downsamples or upsamples a pixel stream.

• Downsampling reduces bandwidth and storage requirements in a video system by
combining pixel chrominance components over multiple pixels. You can specify a filter
to prevent aliasing, by selecting the default filter or by entering coefficients.

• Upsampling restores a signal to its original rate. You can use interpolation or
replication to calculate the extra sample.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

The object accepts luma and the chrominance components. The object does not modify the
luma component and applies delay to align with the resampled chrominance outputs. The
rate of the output luma component is the same as the input.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object™, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

CR = visionhdl.ChromaResampler returns a System object, CR, that downsamples
from 4:4:4 to 4:2:2 and applies the default antialiasing filter.

2-2

 visionhdl.ChromaResampler System object

CR = visionhdl.ChromaResampler(Name,Value) returns a chroma resampler
System object, CR, with additional options specified by one or more Name,Value pair
arguments. Name is a property name and Value is the corresponding value. Name must
appear inside single quotes (''). You can specify several name-value pair arguments in
any order as Name1,Value1,...,NameN,ValueN. Properties not specified retain their
default values.

Properties

Resampling

Resampling format.

• 4:4:4 to 4:2:2 (default) — Perform a downsampling operation.
• 4:2:2 to 4:4:4 — Perform an upsampling operation.

AntialiasingFilterSource

Lowpass filter to accompany a downsample operation.

• Auto (default) — Built-in lowpass filter.
• Property — Filter using the coefficients in HorizontalFilterCoefficients

property.
• None — No filtering of the input signal.

This property applies when you set Resampling to 4:4:4 to 4:2:2.

HorizontalFilterCoefficients

Coefficients for the antialiasing filter.

Enter the coefficients as a vector. This property applies when you set Resampling to
4:4:4 to 4:2:2 and Antialiasing filter to Property.

Default: [0.2,0.6,0.2]

InterpolationFilter

Interpolation method for an upsample operation.

• Linear (default) — Linear interpolation to calculate the missing values.

2-3

2 System Objects — Alphabetical List

• Pixel replication — Repeat the chrominance value of the preceding pixel to
create the missing pixel.

This property applies when you set Resampling to 4:2:2 to 4:4:4.

RoundingMethod

Rounding mode used for fixed-point operations.

The object uses fixed-point arithmetic for internal calculations when the input is any
integer or fixed-point data type. This option does not apply when the input data type is
single or double.

Default: Floor

OverflowAction

Overflow action used for fixed-point operations.

The object uses fixed-point arithmetic for internal calculations when the input is any
integer or fixed-point data type. This option does not apply when the input data type is
single or double.

Default: Wrap

CustomCoefficientsDataType

Data type for the antialiasing filter coefficients.

Specify a custom data type as a character vector. This parameter applies when you set
Antialiasing filter to Property or Auto.

Default: 'fixdt(1,16,0)'

Methods

step Compute next pixel in upsampled or
downsampled pixel stream

Common to All System Objects

clone Create System object with same property values

2-4

 visionhdl.ChromaResampler System object

Common to All System Objects

getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Downsample a Y'CbCr Image

Resample a 4:4:4 Y'CbCr image to 4:2:2. The example also shows how to convert a R'G'B'
input image to Y'CbCr color space.

Prepare a test image by selecting a portion of an image file.

frmActivePixels = 64;

frmActiveLines = 48;

frmOrig = imread('fabric.png');

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels,:);

Create a serializer and specify the size of inactive pixel regions. The number of padding
pixels on each line must be greater than the latency of each pixel-processing object.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',3,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+40,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

Create a color space converter and resampler, using the default property values. The
default conversion is 'RGB to YCbCr'. The default resampling mode is '4:4:4 to 4:2:2'. The
default anti-aliasing filter is a 29-tap lowpass filter. This gives the object a latency of 30
cycles.

convert2ycbcr = visionhdl.ColorSpaceConverter();

downsampler = visionhdl.ChromaResampler();

2-5

2 System Objects — Alphabetical List

Serialize the test image using the serializer object. pixIn is a numPixelsPerFrame -
by-3 matrix. ctrlIn is a vector of control signal structures. Preallocate vectors for the
output signals.

Note: This syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pix444 = zeros(numPixelsPerFrame,3,'uint8');

ctrl444 = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

pix422 = zeros(numPixelsPerFrame,3,'uint8');

ctrl422 = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the stream, convert to YCbCr, then downsample.

for p = 1:numPixelsPerFrame

 [pix444(p,:),ctrl444(p)] = convert2ycbcr(pixIn(p,:),ctrlIn(p));

 [pix422(p,:),ctrl422(p)] = downsampler(pix444(p,:),ctrl444(p));

end

Create deserializers with a format matching that of the serializer. Convert the 4:4:4 and
4:2:2 pixel streams back to image frames.

pix2frm444 = visionhdl.PixelsToFrame(...

 'NumComponents',3,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

pix2frm422 = visionhdl.PixelsToFrame(...

 'NumComponents',3,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frm444,frmValid] = pix2frm444(pix444,ctrl444);

[frm422,frmValid] = pix2frm422(pix422,ctrl422);

There are the same number of pixels in the 4:2:2 and 4:4:4 pixel-streams and frames.
To examine the resampled data, regroup the pixel data for the first 8 pixels of the first
line. The first row is the Y elements of the pixels, the second row is the Cb elements, and

2-6

 visionhdl.ChromaResampler System object

the third row is the Cr elements. Notice that, in the 4:2:2 data, the Cb and Cr elements
change only every second sample.

YCbCr444 = [frm444(1,1:8,1); frm444(1,1:8,2); frm444(1,1:8,3)]

YCbCr422 = [frm422(1,1:8,1); frm422(1,1:8,2); frm422(1,1:8,3)]

figure

imshow(frm422,'InitialMagnification',300)

title '4:2:2'

figure

imshow(frm444,'InitialMagnification',300)

title '4:4:4'

YCbCr444 =

 3×8 uint8 matrix

 132 134 129 124 125 122 118 119

 116 118 119 122 122 121 123 123

 135 131 125 121 119 116 118 118

YCbCr422 =

 3×8 uint8 matrix

 132 134 129 124 125 122 118 119

 116 116 120 120 122 122 123 123

 135 135 126 126 119 119 118 118

2-7

2 System Objects — Alphabetical List

Algorithm

This object implements the algorithms described on the Chroma Resampler block
reference page.

2-8

 visionhdl.ChromaResampler System object

See Also
Chroma Resampler | visionhdl.FrameToPixels | vision.ChromaResampler

Introduced in R2015a

2-9

2 System Objects — Alphabetical List

step

System object: visionhdl.ChromaResampler
Package: visionhdl

Compute next pixel in upsampled or downsampled pixel stream

Syntax

[pixelOut,ctrlOut] = step(resample,pixelIn,ctrlIn)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[pixelOut,ctrlOut] = step(resample,pixelIn,ctrlIn) computes the next
output pixel, pixelOut, in the resampled video stream. The pixel data arguments,
pixelIn and pixelOut, are vectors of three values representing a pixel in Y'CbCr color
space. The luma component and control signals, ctrlIn, are passed through and aligned
with the output pixel stream.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable

2-10

 step

property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments

resample — Resampler
visionhdl.ChromaResampler System object

Specify a visionhdl.ChromaResampler System object that you created and configured.

pixelIn — Input pixel
vector

Single pixel in gamma-corrected Y'CbCr color space, specified as a vector of three values.

Supported data types:

• uint8 or uint16
• fixdt(0,N,0), N = 8,9,...,16
• double and single data types are supported for simulation but not for HDL code

generation.

ctrlIn — Pixel stream control signals
structure

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut — Output pixel
vector

Single pixel in gamma-corrected Y'CbCr color space, returned as a vector of three values.

Supported data types:

• uint8 or uint16

2-11

2 System Objects — Alphabetical List

• fixdt(0,N,0), N = 8,9,...,16
• double and single data types are supported for simulation but not for HDL code

generation.

ctrlOut — Pixel stream control signals
structure

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

2-12

 visionhdl.ColorSpaceConverter System object

visionhdl.ColorSpaceConverter System object
Package: visionhdl

Convert color information between color spaces

Description

visionhdl.ColorSpaceConverter converts between R'G'B' and Y'CbCr color spaces,
and also converts R'G'B' to intensity.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The ColorSpaceConverter System object operates on gamma-corrected color
spaces. However, to simplify use of the System object, the property arguments do not
include the prime notation.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

CSC = visionhdl.ColorSpaceConverter returns a System object, CSC, that converts
R'G'B' to Y'CbCr using the Rec. 601 (SDTV) standard.

CSC = visionhdl.ColorSpaceConverter(Name,Value) returns a System object,
CSC, with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order

2-13

2 System Objects — Alphabetical List

as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

Properties

Conversion

Conversion that the object performs on the input video stream.

• RGB to YCbCr (default)
• YCbCr to RGB

• RGB to intensity

The step method accepts input as a vector of three values representing a single pixel. If
you choose RGB to intensity, the output is a scalar value. Otherwise, the output is a
vector of three values.

ConversionStandard

Conversion equation to use on the input video stream.

• Rec. 601 (SDTV) (default)
• Rec. 709 (HDTV)

This property does not apply when you set Conversion to RGB to intensity.

ScanningStandard

Scanning standard to use for HDTV conversion.

• 1250/50/2:1 (default)
• 1125/60/2:1

This property applies when you set ConversionStandard to Rec. 709 (HDTV).

Methods

step Convert one pixel between color spaces

2-14

 visionhdl.ColorSpaceConverter System object

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples
Convert a Color Image to Grayscale

This example shows how to convert pixel stream data to a different color space.

Set the dimensions of the test image and load a color source image. Select a portion of the
image matching the desired test size.

frmActivePixels = 64;

frmActiveLines = 48;

frmOrig = imread('fabric.png');

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels,:);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

2-15

2 System Objects — Alphabetical List

Create a serializer object and specify size of inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',3,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

Create a color space converter object. Select a conversion from RGB to grayscale.

convertrgb2gray = visionhdl.ColorSpaceConverter(...

 'Conversion','RGB to intensity');

Serialize the test image. pixIn is a numPixelsPerFrame-by-3 matrix. ctrlIn is a vector
of control signal structures.

Note: This syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Set up variables, and convert each pixel in the stream to the new color space.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = zeros(numPixelsPerFrame,1,'uint8');

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

for p = 1:numPixelsPerFrame

 [pixOut(p),ctrlOut(p)] = convertrgb2gray(pixIn(p,:),ctrlIn(p));

end

Create a deserializer object with format matching that of the serializer. Convert the pixel
stream to an image frame, and display the grayscale output image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);

if frmValid

2-16

 visionhdl.ColorSpaceConverter System object

 figure

 imshow(frmOutput,'InitialMagnification',300)

 title 'Output Image'

end

Algorithm

This object implements the algorithms described on the Color Space Converter block
reference page.

See Also
Colorspace Converter | vision.ColorSpaceConverter | rgb2ycbcr |
visionhdl.FrameToPixels | ycbcr2rgb | rgb2gray

Introduced in R2015a

2-17

2 System Objects — Alphabetical List

step
System object: visionhdl.ColorSpaceConverter
Package: visionhdl

Convert one pixel between color spaces

Syntax

[pixelOut,ctrlOut] = step(convert_color_space,pixelIn,ctrlIn)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[pixelOut,ctrlOut] = step(convert_color_space,pixelIn,ctrlIn) converts
a single pixel from one color space to another. The input, pixelIn is a vector of three
values representing one pixel in R'G'B' or Y'CbCr color space. If the Conversion
property is set to RGB to YCbCr or YCbCr to RGB, then pixelOut is a vector of three
values representing one pixel. If the Conversion property is set to RGB to intensity,
then pixelOut is a scalar value representing one pixel.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The ColorSpaceConverter System object operates on gamma-corrected color
spaces. However, to simplify use of the System object, the property arguments do not
include the prime notation.

2-18

 step

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments

convert_color_space — Color space converter
visionhdl.ColorSpaceConverter System object

Specify a visionhdl.ColorSpaceConverter System object that you created and
configured.

pixelIn — Input pixel
vector

Input pixel in gamma-corrected R'G'B' or Y'CbCr color space, specified as a vector of
unsigned integer values.

Supported data types:

• uint8 or uint16
• fixdt(0,N,0), N = 8,9,...,16
• double and single data types are supported for simulation but not for HDL code

generation.

ctrlIn — Pixel stream control signals
structure

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut — Output pixel
vector

2-19

2 System Objects — Alphabetical List

Output pixel specified as a vector of three unsigned integer values, or a scalar unsigned
integer value.

• If you set the Conversion property to RGB to YCbCr or YCbCr to RGB, then
pixelOut is a vector representing the pixel in gamma-corrected color space.

• If you set the Conversion property to RGB to intensity, then pixelOut is a
scalar representing pixel intensity.

Supported data types:

• uint8 or uint16
• fixdt(0,N,0), N = 8,9,....,16
• double and single data types are supported for simulation but not for HDL code

generation.

ctrlOut — Pixel stream control signals
structure

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

2-20

 visionhdl.Closing System object

visionhdl.Closing System object

Package: visionhdl

Morphological closing of binary pixel data

Description

visionhdl.Closing performs morphological dilation, followed by morphological
erosion, using the same neighborhood for both calculations. The object operates on a
stream of binary intensity values.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

C = visionhdl.Closing returns a System object, C, that performs morphological
closing on a binary pixel stream.

C = visionhdl.Closing(Name,Value) returns a System object, C, with additional
options specified by one or more Name,Value pair arguments. Name is a property
name and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

2-21

2 System Objects — Alphabetical List

Properties
Neighborhood

Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The object supports neighborhoods of up to 32×32 pixels. To use a structuring element,
specify Neighborhood as getnhood(strel(shape)).

Default: [0,1,0;1,1,1;0,1,0]

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. The object allocates (neighborhood lines – 1)-by-LineBufferSize memory
locations to store the pixels.

Default: 2048

Methods
step Report closed pixel value based on

neighborhood

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples
Morphological Close

Perform morphological close on a thumbnail image.

2-22

 visionhdl.Closing System object

Load a source image from a file. Select a portion of the image that matches the desired
test size. This source image contains uint8 pixel intensity values. Apply a threshold to
convert to binary pixel data.

frmOrig = imread('rice.png');

frmActivePixels = 64;

frmActiveLines = 48;

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

frmInput = frmInput>128;

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

Create a serializer object and define inactive pixel regions. Make the number of inactive
pixels following each active line at least double the horizontal size of the neighborhood.
Make the number of lines following each frame at least double the vertical size of the
neighborhood.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+20,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',3,...

2-23

2 System Objects — Alphabetical List

 'FrontPorch',10);

Create a filter object.

 mclose = visionhdl.Closing(...

 'Neighborhood',getnhood(strel('disk',4)));

Serialize the test image by calling the serializer object. pixIn is a vector of intensity
values. ctrlIn is a vector of control signal structures.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = false(numPixelsPerFrame,1);

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the morphed value. Monitor the control
signals to determine latency of the object. The latency of a configuration depends on the
number of active pixels in a line and the size of the neighborhood

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = mclose(pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =

 'object latency is 546 cycles'

2-24

 visionhdl.Closing System object

Create a deserializer object with a format matching that of the serializer. Convert the
pixel stream to an image frame by calling the deserializer object. Display the resulting
image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

Algorithm

This object implements the algorithms described on the Closing block reference page.

See Also
visionhdl.Opening | visionhdl.FrameToPixels | visionhdl.Erosion | visionhdl.Dilation |
Closing | imclose

2-25

2 System Objects — Alphabetical List

Introduced in R2015a

2-26

 step

step

System object: visionhdl.Closing
Package: visionhdl

Report closed pixel value based on neighborhood

Syntax

[pixelOut,ctrlOut] = step(close,pixelIn,ctrlIn)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[pixelOut,ctrlOut] = step(close,pixelIn,ctrlIn) returns the next
binary pixel value, pixelOut, resulting from a morphological close operation on the
neighborhood around each input binary pixel, pixelIn.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

2-27

2 System Objects — Alphabetical List

Input Arguments

close — Morphological closer
visionhdl.Closing System object

Specify a visionhdl.Closing System object that you created and configured.

pixelIn — Input pixel
scalar

Single pixel, specified as a scalar logical value.

ctrlIn — Pixel stream control signals
structure

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut — Output pixel
scalar

Single pixel transformed by a morphological operation, returned as a scalar logical
value.

ctrlOut — Pixel stream control signals
structure

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

2-28

 visionhdl.GrayscaleClosing System object

visionhdl.GrayscaleClosing System object
Package: visionhdl

Morphological closing of grayscale pixel data

Description

visionhdl.GrayscaleClosing performs a morphological dilation operation, followed
by a morphological erosion operation, using the same neighborhood for both calculations.
The object operates on a stream of pixel intensity values. You can specify a neighborhood,
or structuring element, of up to 32×32 pixels. For line, square, or rectangle structuring
elements more than 8 pixels wide, the object uses the Van Herk algorithm to find the
maximum and minimum. For structuring elements less than 8 pixels wide, or that
contain zero elements, the object implements a pipelined comparison tree to find the
maximum and minimum.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

C = visionhdl.GrayscaleClosing returns a System object, C, that performs
morphological closing on a pixel stream.

C = visionhdl.GrayscaleClosing(Name,Value) returns a System object, C,
with additional options specified by one or more Name,Value pair arguments. Name

2-29

2 System Objects — Alphabetical List

is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

Properties

Neighborhood

Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The object supports neighborhoods of up to 32×32 pixels. To use a structuring element,
specify Neighborhood as getnhood(strel(shape)). The minimum neighborhood size
is a 2×2 matrix, or a 2×1 column vector. If the neighborhood is a row vector, it must be at
least 8 columns wide and contain no zeros.

Default: ones(3,3)

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. The object allocates (neighborhood lines – 1)-by-LineBufferSize memory
locations to store the pixels.

Default: 2048

Methods

step Report closed pixel value based on
neighborhood

Common to All System Objects

clone Create System object with same property values

2-30

 visionhdl.GrayscaleClosing System object

Common to All System Objects

getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Grayscale Morphological Closing

Perform morphological closing on a grayscale thumbnail image.

Load a source image from a file. Select a portion of the image matching the desired test
size.

frmOrig = imread('rice.png');

frmActivePixels = 64;

frmActiveLines = 48;

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

2-31

2 System Objects — Alphabetical List

Create a serializer object and define the inactive pixel regions. Make the number
of inactive pixels following each active line at least double the horizontal size of the
neighborhood. Make the number of lines following each frame at least double the vertical
size of the neighborhood.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+20,...

 'TotalVideoLines',frmActiveLines+20,...

 'StartingActiveLine',3,...

 'FrontPorch',10);

Create a filter object.

mclose = visionhdl.GrayscaleClosing(...

 'Neighborhood',ones(5,5));

Serialize the test image by calling the serializer object. pixIn is a vector of intensity
values. ctrlIn is a vector of control signal structures.

Note: This syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = uint8(zeros(numPixelsPerFrame,1));

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the morphed value. Monitor the control
signals to determine the latency of the object. The latency of a configuration depends on
the number of active pixels in a line and the size of the neighborhood.

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

2-32

 visionhdl.GrayscaleClosing System object

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = mclose(pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =

 'object latency is 388 cycles'

Create a deserializer object with a format matching that of the serializer. Convert the
pixel stream to an image frame by calling the deserializer object. Display the resulting
image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

2-33

2 System Objects — Alphabetical List

Algorithm

This object implements the algorithms described on the Grayscale Closing block
reference page.

See Also
visionhdl.GrayscaleDilation | visionhdl.GrayscaleOpening | Grayscale Closing |
visionhdl.FrameToPixels | visionhdl.GrayscaleErosion | imclose

Introduced in R2016a

2-34

 step

step

System object: visionhdl.GrayscaleClosing
Package: visionhdl

Report closed pixel value based on neighborhood

Syntax

[pixelOut,ctrlOut] = step(close,pixelIn,ctrlIn)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[pixelOut,ctrlOut] = step(close,pixelIn,ctrlIn) returns the next pixel
value, pixelOut, resulting from morphological closing on the neighborhood around each
input pixel intensity value, pixelIn.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

2-35

2 System Objects — Alphabetical List

Input Arguments

close — Morphological closer
visionhdl.GrayClosing System object

Specify a visionhdl.GrayClosing System object that you created and configured.

pixelIn — Input pixel
scalar

Single pixel, specified as a scalar value.

Supported data types:

• uint8, uint16,uint32
• fixdt(0,N,M)

• double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn — Pixel stream control signals
structure

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut — Output pixel
scalar

Single pixel transformed by a morphological operation, returned as a scalar value.

The data type is the same as the data type of pixelIn.

ctrlOut — Pixel stream control signals
structure

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

2-36

 step

Introduced in R2016a

2-37

2 System Objects — Alphabetical List

visionhdl.DemosaicInterpolator System object

Package: visionhdl

Construct full RGB pixel data from Bayer pattern pixels

Description

visionhdl.DemosaicInterpolator provides a Bayer pattern interpolation filter
for streaming video data. You can select a low complexity bilinear interpolation, or a
moderate complexity gradient-corrected bilinear interpolation. The object implements the
calculations using hardware-efficient algorithms for HDL code generation.

• The object performs bilinear interpolation on a 3×3 pixel window using only additions
and bit shifts.

• The object performs gradient correction on a 5×5 pixel window. The object implements
the calculation using bit shift, addition, and low order Canonical Signed Digit (CSD)
multiply.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

D = visionhdl.DemosaicInterpolator returns a System object, D, that interpolates
R'G'B' data from a Bayer pattern pixel stream.

D = visionhdl.DemosaicInterpolator(Name,Value) returns a System object,
D, with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

2-38

 visionhdl.DemosaicInterpolator System object

Properties

InterpolationAlgorithm

Algorithm the object uses to calculate the missing pixel values.

• Bilinear — Average of the pixel values in the surrounding 3×3 neighborhood.
• Gradient-corrected linear (default) — Bilinear average, corrected for intensity

gradient.

SensorAlignment

Color sequence of the pixels in the input stream.

Specify the sequence of R, G, and B pixels that correspond to the 2-by-2 block of pixels in
the top-left corner of the input image. Specify the sequence in left-to-right, top-to-bottom
order. For instance, the default value, RGGB, represents an image with this pattern.

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of 2 that accommodates the number of active pixels in a horizontal line.
If you specify a value that is not a power of two, the object uses the next largest power
of two. When you set InterpolationAlgorithm to Bilinear, the object allocates 2-
by-LineBufferSize memory locations. When you set InterpolationAlgorithm to
Gradient-corrected linear, the object allocates 4-by-LineBufferSize memory
locations.

Default: 2048

Methods

step Demosaic a Bayer pattern video stream

2-39

2 System Objects — Alphabetical List

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Demosaic a Bayer Pattern Image

This example constructs full RGB pixel data from a Bayer pattern thumbnail image.

Set the dimensions of the test image. Load the source image file. This image is in Bayer
pattern: each pixel is represented by one value, alternating green values with red and
blue values. Then select a portion of the image matching the desired test size. These
offsets select the face of the woman in the image.

frmActivePixels = 256;

frmActiveLines = 192;

frmOrig = imread('mandi.tif');

frmInput = frmOrig(900:899+frmActiveLines, 2350:2349+frmActivePixels);

figure

imshow(frmInput)

title 'Input Image'

2-40

 visionhdl.DemosaicInterpolator System object

Create a serializer object and specify size of the inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

Create an interpolator object. Specify the sequence of color values matching the 2-by-2
pixels in the top-left corner of the image.

BayerInterpolator = visionhdl.DemosaicInterpolator(...

 'SensorAlignment', 'RGGB');

Serialize the test image. pixIn is a vector of pixel values. ctrlIn is a vector of control
signal structures.

Note: This syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

2-41

2 System Objects — Alphabetical List

[pixIn,ctrlIn] = frm2pix(frmInput);

Set up variables, and generate the {R,G,B} triplet for each pixel in the stream. This
example prints a progress message every 32 lines.

[pixels,lines,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

pixOut = zeros(numPixelsPerFrame,3,'uint8');

lineCount = 1;

for p = 1:numPixelsPerFrame

 if ctrlIn(p).hEnd

 lineCount = lineCount+1;

 if mod(lineCount,32)==0

 fprintf('Processing... line %d\n',lineCount)

 end

 end

 [pixOut(p,:),ctrlOut(p)] = BayerInterpolator(pixIn(p),ctrlIn(p));

end

Processing... line 32

Processing... line 64

Processing... line 96

Processing... line 128

Processing... line 160

Processing... line 192

Create a deserializer object with a format matching that of the serializer. Convert the
pixel stream to an image frame, and display the result.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',3,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput)

 title 'Output Image'

end

2-42

 visionhdl.DemosaicInterpolator System object

Algorithm

This object implements the algorithms described on the Demosaic Interpolator block
reference page.

See Also
Demosaic Interpolator | vision.DemosaicInterpolator | demosaic |
visionhdl.FrameToPixels

Introduced in R2015a

2-43

2 System Objects — Alphabetical List

step
System object: visionhdl.DemosaicInterpolator
Package: visionhdl

Demosaic a Bayer pattern video stream

Syntax

[pixelOut,ctrlOut] = step(demosaic,pixelIn,ctrlIn)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[pixelOut,ctrlOut] = step(demosaic,pixelIn,ctrlIn) interpolates the
missing color values of a Bayer pattern input pixel stream, and returns the next pixel
value, pixelOut, as a vector of R'G'B' values. pixelIn represents one pixel in a Bayer
pattern image.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

2-44

 step

Input Arguments

demosaic — Interpolator
visionhdl.DemosaicInterpolator System object

Specify a visionhdl.DemosaicInterpolator System object that you created and
configured.

pixelIn — Input pixel
scalar

Single pixel, specified as a scalar value.

Supported data types:

• uint or int
• fixdt(0,N,0)

• double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn — Pixel stream control signals
structure

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut — Output pixel
scalar

Single pixel, returned as a vector of three values in R'G'B' color space.

The data type of pixelOut is the same as the data type of pixelIn.

ctrlOut — Pixel stream control signals
structure

2-45

2 System Objects — Alphabetical List

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

2-46

 visionhdl.Dilation System object

visionhdl.Dilation System object

Package: visionhdl

Morphological dilation of binary pixel data

Description

visionhdl.Dilation replaces each pixel with the local maximum of the neighborhood
around the pixel. The object operates on a stream of binary intensity values.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

D = visionhdl.Dilation returns a System object, D, that performs morphological
dilation on a binary video stream.

D = visionhdl.Dilation(Name,Value) returns a System object, D, with
additional options specified by one or more Name,Value pair arguments. Name is
a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

2-47

2 System Objects — Alphabetical List

Properties
Neighborhood

Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The object supports neighborhoods of up to 32×32 pixels. To use a structuring element,
specify Neighborhood as getnhood(strel(shape)).

Default: [0,1,0;1,1,1;0,1,0]

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. The object allocates (neighborhood lines – 1)-by-LineBufferSize memory
locations to store the pixels.

Default: 2048

Methods
step Report dilated pixel value based on

neighborhood

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples
Morphological Dilate

Perform morphological dilate on a thumbnail image.

2-48

 visionhdl.Dilation System object

Load a source image from a file. Select a portion of the image that matches the desired
test size. This source image contains uint8 pixel intensity values. Apply a threshold to
convert to binary pixel data.

frmOrig = imread('rice.png');

frmActivePixels = 64;

frmActiveLines = 48;

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

frmInput = frmInput>128;

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

Create a serializer object and define inactive pixel regions. Make the number of inactive
pixels following each active line at least double the horizontal size of the neighborhood.
Make the number of lines following each frame at least double the vertical size of the
neighborhood.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+20,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',3,...

2-49

2 System Objects — Alphabetical List

 'FrontPorch',10);

Create a filter object.

 mdilate = visionhdl.Dilation(...

 'Neighborhood',getnhood(strel('disk',3)));

Serialize the test image by calling the serializer object. pixIn is a vector of intensity
values. ctrlIn is a vector of control signal structures.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = false(numPixelsPerFrame,1);

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the morphed value. Monitor the control
signals to determine latency of the object. The latency of a configuration depends on the
number of active pixels in a line and the size of the neighborhood

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = mdilate(pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =

 'object latency is 186 cycles'

2-50

 visionhdl.Dilation System object

Create a deserializer object with a format matching that of the serializer. Convert the
pixel stream to an image frame by calling the deserializer object. Display the resulting
image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

Algorithm

This object implements the algorithms described on the Dilation block reference page.

See Also
Dilation | visionhdl.FrameToPixels | visionhdl.Erosion | imdilate

2-51

2 System Objects — Alphabetical List

Introduced in R2015a

2-52

 step

step

System object: visionhdl.Dilation
Package: visionhdl

Report dilated pixel value based on neighborhood

Syntax

[pixelOut,ctrlOut] = step(dilate,pixelIn,ctrlIn)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[pixelOut,ctrlOut] = step(dilate,pixelIn,ctrlIn) returns the next pixel
value, pixelOut, resulting from a morphological dilation operation on the neighborhood
around each input pixel, pixelIn.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

2-53

2 System Objects — Alphabetical List

Input Arguments

dilate — Morphological dilator
visionhdl.Dilation System object

Specify a visionhdl.Dilation System object that you created and configured.

pixelIn — Input pixel
scalar

Single pixel, specified as a scalar logical value.

ctrlIn — Pixel stream control signals
structure

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut — Output pixel
scalar

Single pixel transformed by a morphological operation, returned as a scalar logical
value.

ctrlOut — Pixel stream control signals
structure

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

2-54

 visionhdl.GrayscaleDilation System object

visionhdl.GrayscaleDilation System object
Package: visionhdl

Morphological dilation of grayscale pixel data

Description

visionhdl.GrayscaleDilation performs morphological dilation on a stream of pixel
intensity values. You can specify a neighborhood, or structuring element, of up to 32×32
pixels. For line, square, or rectangle structuring elements more than 8 pixels wide, the
object uses the Van Herk algorithm to find the maximum. This algorithm uses only three
comparators to find the maximums of all the rows, then uses a comparison tree to find
the maximum of the row results.

For structuring elements less than 8 pixels wide, or that contain zero elements, the object
implements a pipelined comparison tree for each row of the neighborhood. An additional
comparison tree finds the maximum value of the row results. If the structuring element
contains zeros that mask off pixels, the algorithm saves hardware resources by not
implementing comparators for those pixel locations.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

D = visionhdl.GrayscaleDilation returns a System object, D, that performs
morphological dilation on a pixel stream.

2-55

2 System Objects — Alphabetical List

D = visionhdl.GrayscaleDilation(Name,Value) returns a System object, D,
with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

Properties

Neighborhood

Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The object supports neighborhoods of up to 32×32 pixels. To use a structuring element,
specify Neighborhood as getnhood(strel(shape)). The minimum neighborhood size
is a 2×2 matrix, or a 2×1 column vector. If the neighborhood is a row vector, it must be at
least 8 columns wide and contain no zeros.

Default: ones(5,5)

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. The object allocates (neighborhood lines – 1)-by-LineBufferSize memory
locations to store the pixels.

Default: 2048

Methods

step Report dilated pixel value based on
neighborhood

Common to All System Objects

clone Create System object with same property values

2-56

 visionhdl.GrayscaleDilation System object

Common to All System Objects

getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Grayscale Morphological Dilation

Perform morphological dilation on a grayscale thumbnail image.

Load a source image from a file. Select a portion of the image matching the desired test
size.

frmOrig = imread('rice.png');

frmActivePixels = 64;

frmActiveLines = 48;

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

2-57

2 System Objects — Alphabetical List

Create a serializer object and define the inactive pixel regions. Make the number
of inactive pixels following each active line at least double the horizontal size of the
neighborhood. Make the number of lines following each frame at least double the vertical
size of the neighborhood.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+20,...

 'TotalVideoLines',frmActiveLines+20,...

 'StartingActiveLine',3,...

 'FrontPorch',10);

Create a filter object.

mdilate = visionhdl.GrayscaleDilation(...

 'Neighborhood',ones(4,4));

Serialize the test image by calling the serializer object. pixIn is a vector of intensity
values. ctrlIn is a vector of control signal structures.

Note: This syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = uint8(zeros(numPixelsPerFrame,1));

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the morphed value. Monitor the control
signals to determine the latency of the object. The latency of a configuration depends on
the number of active pixels in a line and the size of the neighborhood.

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

2-58

 visionhdl.GrayscaleDilation System object

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = mdilate(pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =

 'object latency is 190 cycles'

Create a deserializer object with a format matching that of the serializer. Convert the
pixel stream to an image frame by calling the deserializer object. Display the resulting
image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

2-59

2 System Objects — Alphabetical List

Algorithm

This object implements the algorithms described on the Grayscale Dilation block
reference page.

See Also
| visionhdl.FrameToPixels | visionhdl.GrayscaleErosion | Grayscale Dilation |
imdilate

Introduced in R2016a

2-60

 step

step

System object: visionhdl.GrayscaleDilation
Package: visionhdl

Report dilated pixel value based on neighborhood

Syntax

[pixelOut,ctrlOut] = step(dilate,pixelIn,ctrlIn)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[pixelOut,ctrlOut] = step(dilate,pixelIn,ctrlIn) returns the next pixel
value, pixelOut, resulting from morphological dilation on the neighborhood around each
input pixel intensity value, pixelIn.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

2-61

2 System Objects — Alphabetical List

Input Arguments

dilate — Morphological dilator
visionhdl.GrayscaleDilation System object

Specify a visionhdl.GrayscaleDilation System object that you created and
configured.

pixelIn — Input pixel
scalar

Single pixel, specified as a scalar value.

Supported data types:

• uint8, uint16,uint32
• fixdt(0,N,M)

• double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn — Pixel stream control signals
structure

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut — Output pixel
scalar

Single pixel transformed by a morphological operation, returned as a scalar value.

The data type is the same as the data type of pixelIn.

ctrlOut — Pixel stream control signals
structure

2-62

 step

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2016a

2-63

2 System Objects — Alphabetical List

visionhdl.EdgeDetector System object
Package: visionhdl

Find edges of objects

Description

visionhdl.EdgeDetector finds the edges in a grayscale pixel stream using the
Sobel, Prewitt, or Roberts method. The object convolves the input pixels with derivative
approximation matrices to find the gradient of pixel magnitude along two orthogonal
directions. It then compares the sum of the squares of the gradients to a configurable
threshold to determine if the gradients represent an edge. The Sobel and Prewitt
methods calculate the gradient in horizontal and vertical directions. The Roberts method
calculates the gradients at 45 and 135 degrees.

The object returns a binary image, as a stream of pixel values. A pixel value of 1
indicates that the pixel is an edge. You can optionally enable output of the gradient
values in the two orthogonal directions at each pixel.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

ED = visionhdl.EdgeDetector returns a System object, ED, that detects edges using
the Sobel method.

ED = visionhdl.EdgeDetector(Name,Value) returns a System object, ED, with
additional options specified by one or more Name,Value pair arguments. Name is
a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

2-64

 visionhdl.EdgeDetector System object

Properties

Method

Edge detection algorithm.

Specify 'Sobel', 'Prewitt', or 'Roberts' method.

Default: 'Sobel'

BinaryImageOutputPort

Enable the Edge output of the step method.

When this property is true, the step method returns a binary pixel value representing
whether the object detected an edge at each location in the frame.

Default: true

GradientComponentOutputPorts

Enable the G1 and G2 outputs of the step method.

When this property is true, the step method returns two values representing the
gradients calculated in two orthogonal directions at each pixel. Set the data type for this
argument in the GradientDataType property.

Default: false

ThresholdSource

Source for the gradient threshold value that indicates an edge.

Set this property to 'Input port'to set the threshold as an input argument to the step
method. When this property is set to 'Property', set the threshold in the Threshold
property.

Default: 'Property'

Threshold

Gradient threshold value that indicates an edge, specified as a numeric scalar value.

2-65

2 System Objects — Alphabetical List

The object compares the square of this to the sum of the squares of the gradients. The
object casts this value to the data type of the gradients. This property applies when you
set ThresholdSource to 'Property'.

Default: 20

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. The object allocates (N - 1)-by-LineBufferSize memory locations to store
the pixels, where N is the number of lines in the differential approximation matrix. If you
set the Method property to 'Sobel'or 'Prewitt', then N is 3. If you set the Method
property to 'Roberts', then N is 2.

Default: 2048

RoundingMethod

Rounding mode used for fixed-point operations.

The object uses fixed-point arithmetic for internal calculations when the input is any
integer or fixed-point data type. This option does not apply when the input data type is
single or double.

Default: Floor

OverflowAction

Overflow action used for fixed-point operations.

The object uses fixed-point arithmetic for internal calculations when the input is any
integer or fixed-point data type. This option does not apply when the input data type is
single or double.

Default: Wrap

GradientDataType

Data type for the gradient output values, specified as numerictype(signed,WL,FL),
where WL is the word length and FL is the fraction length in bits.

2-66

 visionhdl.EdgeDetector System object

• 'Full precision' (default) — Use full-precision rules based on the data type of
the pixelIn argument of the step method, and the coefficients of the derivative
approximation matrices.

• 'custom' — Use the data type defined in theCustomGradientDataType property.

CustomGradientDataType

Data type for the gradient output values, specified as numerictype(signed,WL,FL),
where WL is the word length and FL is the fraction length in bits.

Default: numerictype(1,8,0)

Methods

step Detect edges at an image pixel

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Edge Detection Using Sobel Method

Detect edges in a thumbnail image using the Sobel method.

Prepare a test image by selecting a portion of an image file.

frmActivePixels = 64;

frmActiveLines = 48;

frmOrig = imread('rice.png');

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

2-67

2 System Objects — Alphabetical List

Create a serializer and specify the size of inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

Create an edge detection object with the default property values. The default detection
method is Sobel.

edgeDetectSobel = visionhdl.EdgeDetector();

Serialize the test image using the object you created. pixIn is a vector of intensity
values. ctrlIn is a vector of control signal structures. Preallocate vectors for the output
signals.

Note: This syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

2-68

 visionhdl.EdgeDetector System object

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

edgeOut = false(numPixelsPerFrame,1);

For each pixel in the stream, compute whether it represents an edge.

for p = 1:numPixelsPerFrame

 [edgeOut(p),ctrlOut(p)] = edgeDetectSobel(pixIn(p),ctrlIn(p));

end

Create a deserializer with a format matching that of the serializer. Use the deserializer
to convert the output pixel stream to an image frame.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = pix2frm(edgeOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

• “Pixel-Streaming Design in MATLAB”

2-69

2 System Objects — Alphabetical List

Algorithm

This object implements the algorithms described on the Edge Detector block reference
page.

See Also

See Also
vision.EdgeDetector | visionhdl.FrameToPixels | edge | Edge Detector

Topics
“Pixel-Streaming Design in MATLAB”

Introduced in R2015a

2-70

 step

step
System object: visionhdl.EdgeDetector
Package: visionhdl

Detect edges at an image pixel

Syntax

[edge,ctrlOut] = step(detect_edges,pixelIn,ctrlIn)

[G1,G2,ctrlOut] = step(detect_edges,pixelIn,ctrlIn)

[edge,ctrlOut] = step(detect_edges,pixelIn,ctrlIn,thresh)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[edge,ctrlOut] = step(detect_edges,pixelIn,ctrlIn) detects edges in the
neighborhood of pixelIn by computing the gradient in two orthogonal directions. The
edge output argument is a binary value indicating whether the sum of the squares of the
gradients for the input pixel is above the threshold indicating an edge.

[G1,G2,ctrlOut] = step(detect_edges,pixelIn,ctrlIn) detects edges in the
neighborhood of pixelIn by computing the gradient in two orthogonal directions. Use
this syntax when you set GradientComponentOutputPorts property to true. The G1
and G2 output arguments are the gradients calculated in the two orthogonal directions.
When you set the Method property to 'Sobel' or 'Prewitt', the first argument is the
vertical gradient, and the second argument is the horizontal gradient. When you set the
Method property to 'Roberts', the first argument is the 45 degree gradient, and the
second argument is the 135 degree gradient.

[edge,ctrlOut] = step(detect_edges,pixelIn,ctrlIn,thresh) detects edges
in the neighborhood of pixelIn by computing the gradient in two orthogonal directions.

2-71

2 System Objects — Alphabetical List

Use this syntax when you set ThresholdSource property to 'InputPort'. The edge
output argument is a binary value indicating whether the sum of the squares of the
gradients was above the threshold, thresh, squared.

You can use any combination of the optional port syntaxes.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments
detect_edges — Edge detector
visionhdl.EdgeDetector System object

Specify a visionhdl.EdgeDetector System object that you created and configured.

pixelIn — Input pixel
scalar

Intensity of a single pixel, specified as a scalar value.

Supported data types:

• uint or int
• fixdt()

• double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn — Pixel stream control signals
structure

2-72

 step

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

thresh — Threshold
scalar

Gradient threshold value that indicates an edge, specified as a scalar numeric value.

The object compares this value squared to the sum of the squares of the gradients. This
argument is accepted when you set ThresholdSource property to 'InputPort'.

Output Arguments

edge — Edge locations
scalar

Pixel value indicating an edge at this pixel, returned as a scalar binary value.

G1 — Gradient in first direction
scalar

Gradient calculated in the first direction, returned as a scalar value.

This argument is returned when you set GradientComponentOutputPorts property
to true. If you set the Method property to 'Sobel' or 'Prewitt', this argument is the
vertical gradient. When you set the Method property to 'Roberts', this argument is the
45 degree gradient.

Configure the data type of the gradients by using the GradientComponentDataType
and CustomGradientComponent properties.

G2 — Gradient in second direction
scalar

Gradient calculated in the second direction, returned as a scalar value.

This argument is returned when you set GradientComponentOutputPorts property
to true. If you set the Method property to 'Sobel' or 'Prewitt', this argument is the

2-73

2 System Objects — Alphabetical List

horizontal gradient. When you set the Method property to 'Roberts', this argument is
the 135 degree gradient.

Configure the data type of the gradients by using the GradientComponentDataType
and CustomGradientComponent properties.

ctrlOut — Pixel stream control signals
structure

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

2-74

 visionhdl.Erosion System object

visionhdl.Erosion System object

Package: visionhdl

Morphological erosion of binary pixel data

Description

visionhdl.Erosion replaces each pixel with the local minimum of the neighborhood
around the pixel. The object operates on a stream of binary intensity values.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

E = visionhdl.Erosion returns a System object, E, that performs morphological
erosion on a binary pixel stream.

E = visionhdl.Erosion(Name,Value) returns a System object, E, with additional
options specified by one or more Name,Value pair arguments. Name is a property
name and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

2-75

2 System Objects — Alphabetical List

Properties
Neighborhood

Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The object supports neighborhoods of up to 32×32 pixels. To use a structuring element,
specify Neighborhood as getnhood(strel(shape)).

Default: ones(3,3)

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. The object allocates (neighborhood lines – 1)-by-LineBufferSize memory
locations to store the pixels.

Default: 2048

Methods
step Report eroded pixel value based on

neighborhood

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples
Morphological Erode

Perform morphological erode on a thumbnail image.

2-76

 visionhdl.Erosion System object

Load a source image from a file. Select a portion of the image that matches the desired
test size. This source image contains uint8 pixel intensity values. Apply a threshold to
convert to binary pixel data.

frmOrig = imread('rice.png');

frmActivePixels = 64;

frmActiveLines = 48;

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

frmInput = frmInput>128;

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

Create a serializer object and define inactive pixel regions. Make the number of inactive
pixels following each active line at least double the horizontal size of the neighborhood.
Make the number of lines following each frame at least double the vertical size of the
neighborhood.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+20,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',3,...

2-77

2 System Objects — Alphabetical List

 'FrontPorch',10);

Create a filter object.

 merode = visionhdl.Erosion(...

 'Neighborhood',ones(2,7));

Serialize the test image by calling the serializer object. pixIn is a vector of intensity
values. ctrlIn is a vector of control signal structures.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = false(numPixelsPerFrame,1);

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the morphed value. Monitor the control
signals to determine latency of the object. The latency of a configuration depends on the
number of active pixels in a line and the size of the neighborhood

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = merode(pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =

 'object latency is 105 cycles'

2-78

 visionhdl.Erosion System object

Create a deserializer object with a format matching that of the serializer. Convert the
pixel stream to an image frame by calling the deserializer object. Display the resulting
image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

Algorithm

This object implements the algorithms described on the Erosion block reference page.

See Also
Erosion | visionhdl.FrameToPixels | visionhdl.Dilation | imerode

2-79

2 System Objects — Alphabetical List

Introduced in R2015a

2-80

 step

step

System object: visionhdl.Erosion
Package: visionhdl

Report eroded pixel value based on neighborhood

Syntax

[pixelOut,ctrlOut] = step(erode,pixelIn,ctrlIn)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[pixelOut,ctrlOut] = step(erode,pixelIn,ctrlIn) returns the next pixel
value, pixelOut, in the pixel stream resulting from a morphological erosion operation on
the neighborhood around each input pixel, pixelIn.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

2-81

2 System Objects — Alphabetical List

Input Arguments

erode — Morphological eroder
visionhdl.Erosion System object

Specify a visionhdl.Erosion System object that you created and configured.

pixelIn — Input pixel
scalar

Single pixel, specified as a scalar logical value.

ctrlIn — Pixel stream control signals
structure

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut — Output pixel
scalar

Single pixel transformed by a morphological operation, returned as a scalar logical
value.

ctrlOut — Pixel stream control signals
structure

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

2-82

 visionhdl.GrayscaleErosion System object

visionhdl.GrayscaleErosion System object
Package: visionhdl

Morphological erosion of grayscale pixel data

Description

visionhdl.GrayscaleErosion performs morphological erosion on a stream of pixel
intensity values. You can specify a neighborhood, or structuring element, of up to 32×32
pixels. For line, square, or rectangle structuring elements more than 8 pixels wide, the
object uses the Van Herk algorithm to find the maximum. This algorithm uses only three
comparators to find the maximums of all the rows, then uses a comparison tree to find
the maximum of the row results.

For structuring elements less than 8 pixels wide, or that contain zero elements, the object
implements a pipelined comparison tree for each row of the neighborhood. An additional
comparison tree finds the maximum value of the row results. If the structuring element
contains zeros that mask off pixels, the algorithm saves hardware resources by not
implementing comparators for those pixel locations.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

E = visionhdl.GrayscaleErosion returns a System object, E, that performs a
morphological erosion on a pixel stream.

2-83

2 System Objects — Alphabetical List

E = visionhdl.GrayscaleErosion(Name,Value) returns a System object, E,
with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

Properties

Neighborhood

Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The object supports neighborhoods of up to 32×32 pixels. To use a structuring element,
specify Neighborhood as getnhood(strel(shape)). The minimum neighborhood size
is a 2×2 matrix, or a 2×1 column vector. If the neighborhood is a row vector, it must be at
least 8 columns wide and contain no zeros.

Default: ones(3,3)

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. The object allocates (neighborhood lines – 1)-by-LineBufferSize memory
locations to store the pixels.

Default: 2048

Methods

step Report eroded pixel value based on
neighborhood

Common to All System Objects

clone Create System object with same property values

2-84

 visionhdl.GrayscaleErosion System object

Common to All System Objects

getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Grayscale Morphological Erosion

Perform morphological erosion on a grayscale thumbnail image.

Load a source image from a file. Select a portion of the image matching the desired test
size.

frmOrig = imread('rice.png');

frmActivePixels = 64;

frmActiveLines = 48;

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

2-85

2 System Objects — Alphabetical List

Create a serializer object and define the inactive pixel regions. Make the number
of inactive pixels following each active line at least double the horizontal size of the
neighborhood. Make the number of lines following each frame at least double the vertical
size of the neighborhood.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+20,...

 'TotalVideoLines',frmActiveLines+20,...

 'StartingActiveLine',3,...

 'FrontPorch',10);

Create a filter object.

merode = visionhdl.GrayscaleErosion(...

 'Neighborhood',ones(2,5));

Serialize the test image by calling the serializer object. pixIn is a vector of intensity
values. ctrlIn is a vector of control signal structures.

Note: This syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = uint8(zeros(numPixelsPerFrame,1));

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the morphed value. Monitor the control
signals to determine the latency of the object. The latency of a configuration depends on
the number of active pixels in a line and the size of the neighborhood.

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

2-86

 visionhdl.GrayscaleErosion System object

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = merode(pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =

 'object latency is 109 cycles'

Create a deserializer object with a format matching that of the serializer. Convert the
pixel stream to an image frame by calling the deserializer object. Display the resulting
image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

2-87

2 System Objects — Alphabetical List

Algorithm

This object implements the algorithms described on the Grayscale Erosion block
reference page.

See Also
visionhdl.FrameToPixels | visionhdl.GrayscaleDilation | Grayscale Erosion |
imerode

Introduced in R2016a

2-88

 step

step

System object: visionhdl.GrayscaleErosion
Package: visionhdl

Report eroded pixel value based on neighborhood

Syntax

[pixelOut,ctrlOut] = step(erode,pixelIn,ctrlIn)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[pixelOut,ctrlOut] = step(erode,pixelIn,ctrlIn) returns the next pixel
value, pixelOut, resulting from a morphological erosion of the neighborhood around
each input pixel intensity value, pixelIn.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

2-89

2 System Objects — Alphabetical List

Input Arguments

erode — Morphological eroder
visionhdl.GrayscaleErosion System object

Specify a visionhdl.GrayscaleErosion System object that you created and
configured.

pixelIn — Input pixel
scalar

Single pixel, specified as a scalar value.

Supported data types:

• uint8, uint16,uint32
• fixdt(0,N,M)

• double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn — Pixel stream control signals
structure

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut — Output pixel
scalar

Single pixel transformed by a morphological operation, returned as a scalar value.

The data type is the same as the data type of pixelIn.

ctrlOut — Pixel stream control signals
structure

2-90

 step

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2016a

2-91

2 System Objects — Alphabetical List

visionhdl.FrameToPixels System object

Package: visionhdl

Convert frame-based video to pixel stream

Description

visionhdl.FrameToPixels converts color or grayscale frame-based video to a pixel
stream and control structure. The control structure indicates the validity of each pixel
and its location in the frame. The pixel stream format can include padding pixels around
the active frame. You can configure the frame and padding dimensions by selecting a
common video format or specifying custom dimensions. See “Streaming Pixel Interface”
for details of the pixel stream format.

Use this object to generate input for a function targeted for HDL code generation. This
block does not support HDL code generation.

If your design converts frames to a pixel stream and later converts the stream back
to frames, specify the same video format for the FrameToPixels object and the
PixelsToFrame object.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

F2P = visionhdl.FrameToPixels returns a System object, F2P, that serializes a
grayscale 1080×1920 frame into a 1080p pixel stream with standard padding around the
active data.

F2P = visionhdl.FrameToPixels(Name,Value) returns a System object, F2P,
with additional options specified by one or more Name,Value pair arguments. Name

2-92

 visionhdl.FrameToPixels System object

is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

Properties

NumComponents

Components of each pixel, specified as 1, 3, or 4. Set to 1 for grayscale video. Set to 3 for
color video, for example, {R,G,B} or {Y,Cb,Cr}. Set to 4 to use color with an alpha channel
for transparency. The step method returns a P-by-NumComponents matrix, where P is
the total number of pixels. The default is 1.

VideoFormat

Dimensions of active and inactive regions of a video frame. To select a predefined format,
specify the VideoFormat property as one of the options in the first column of the
table. For a custom format, set VideoFormat to 'Custom', and specify the dimension
properties as integers. The frame dimensions are indicated in the diagram.

2-93

2 System Objects — Alphabetical List

Video

Format

Active

Pixels Per

Line

Active

Video

Lines

Total

Pixels Per

Line

Total

Video

Lines

Starting

Active

Line

Front

Porch

240p 320 240 402 324 1 44
480p 640 480 800 525 36 16
480pH 720 480 858 525 33 16
576p 720 576 864 625 47 12
720p 1280 720 1650 750 25 110
768p 1024 768 1344 806 10 24
1024p 1280 1024 1688 1066 42 48
1080p

(default)
1920 1080 2200 1125 42 88

1200p 1600 1200 2160 1250 50 64

2-94

 visionhdl.FrameToPixels System object

Video

Format

Active

Pixels Per

Line

Active

Video

Lines

Total

Pixels Per

Line

Total

Video

Lines

Starting

Active

Line

Front

Porch

2KCinema 2048 1080 2750 1125 42 639
4KUHDTV 3840 2160 4400 2250 42 88
8KUHDTV 7680 4320 8800 4500 42 88
Custom User-

defined
User-
defined

User-
defined

User-
defined

User-
defined

User-
defined

Note: When using a custom format, the properties you enter for the active and inactive
dimensions of the image must add up to the total frame dimensions.

For the horizontal direction, TotalPixelsPerLine must be greater than or equal
to FrontPorch + ActivePixelsPerLine. The block calculates BackPorch =
TotalPixelsPerLine − FrontPorch − ActivePixelsPerLine.

For the vertical direction, TotalVideoLines must be greater than or equal
to StartingActiveLine + ActiveVideoLines − 1. The block calculates
EndingActiveLine = StartingActiveLine + ActiveVideoLines − 1.

If you specify a format that does not conform to these rules, the object reports an error.

Note: When using a custom format, ActivePixelsPerLine must be greater than 1.
Also, set the horizontal blanking interval, or BackPorch + FrontPorch, according to
these guidelines.

• The total of BackPorch + FrontPorch must be at least 2 times the largest kernel size
of the algorithm in the objects following the visionhdl.FrameToPixels object. If
the kernel size is < 4, the total porch must be at least 8 pixels.

• The BackPorch must be at least 6 pixels. This parameter is the number of inactive
pixels before the first valid pixel in a frame.

Methods

step Convert image frame to pixel stream

2-95

2 System Objects — Alphabetical List

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Convert Between Full-Frame and Pixel-Streaming Data

This example converts a custom-size grayscale image to a pixel stream. It uses the
visionhdl.LookupTable object to obtain the negative image. Then it converts the
pixel-stream back to a full-frame image.

Load the source image from a file. Select a portion of the image matching the desired test
size.

frmOrig = imread('rice.png');

frmActivePixels = 64;

frmActiveLines = 48;

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

2-96

 visionhdl.FrameToPixels System object

Create a serializer object and specify size of inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

Create a lookup table (LUT) object to generate the negative of the input image.

tabledata = linspace(255,0,256);

inverter = visionhdl.LookupTable(tabledata);

Serialize the test image by calling the serializer object. pixIn is a vector of intensity
values. ctrlIn is a vector of control signal structures.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

2-97

2 System Objects — Alphabetical List

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = zeros(numPixelsPerFrame,1,'uint8');

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the stream, look up the negative of the pixel value.

for p = 1:numPixelsPerFrame

 [pixOut(p),ctrlOut(p)] = inverter(pixIn(p),ctrlIn(p));

end

Create a deserializer object with a format matching that of the serializer. Convert the
pixel stream to an image frame by calling the deserializer object. Display the resulting
image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput,'InitialMagnification',300)

 title 'Output Image'

end

• “Pixel-Streaming Design in MATLAB”

2-98

 visionhdl.FrameToPixels System object

See Also

See Also
visionhdl.PixelsToFrame | Frame To Pixels

Topics
“Pixel-Streaming Design in MATLAB”
“Streaming Pixel Interface”

Introduced in R2015a

2-99

2 System Objects — Alphabetical List

step

System object: visionhdl.FrameToPixels
Package: visionhdl

Convert image frame to pixel stream

Syntax

[pixels,ctrlOut] = step(F2P,frm)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[pixels,ctrlOut] = step(F2P,frm)

Converts the input image matrix, frm, to a vector of pixel values, pixels, and an
associated vector of control structures, ctrlOut. The control structure indicates the
validity of each pixel and its location in the frame. The output pixels include padding
around the active image, specified by the VideoFormat property.

See “Streaming Pixel Interface” for details of the pixel stream format.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

2-100

 step

Input Arguments

F2P — Serializer
visionhdl.FrameToPixels System object

Specify a visionhdl.PixelStreamAligner System object that you created and
configured.

frm — Input image
matrix

Input image, specified as an ActiveVideoLines-by-ActivePixelsPerLine-
by-NumComponents matrix, where:

• ActiveVideoLines is the height of the active image
• ActivePixelsPerLine is the width of the active image
• NumComponents is the number of components used to express a single pixel

Set the size of the active image using the VideoFormat property. If the dimensions of im
do not match that specified by VideoFormat, the object returns a warning.

Supported data types:

• uint or int
• fixdt()

• logical

• double or single

Output Arguments

pixels — Pixel values
matrix

Pixel values, returned as a P-by-NumComponents matrix, where:

• P is the total number of pixels in the padded image, calculated as
TotalPixelsPerLine × TotalVideoLines

• NumComponents is the number of components used to express a single pixel

2-101

2 System Objects — Alphabetical List

Set the size of the padded image using the VideoFormat property. The data type of the
pixel values is the same as im.

ctrlOut — Pixel stream control signals
vector of structures

Control structures associated with the output pixels, returned as a P-by-1 vector. P is
the total number of pixels in the padded image, calculated as TotalPixelsPerLine ×
TotalVideoLines. Each structure contains five control signals indicating the validity of
the pixel and its location in the frame. See “Pixel Control Structure”.

Introduced in R2015a

2-102

 visionhdl.GammaCorrector System object

visionhdl.GammaCorrector System object

Package: visionhdl

Apply or remove gamma correction

Description

visionhdl.GammaCorrector applies or removes gamma correction on a stream of
pixels. Gamma correction adjusts linear pixel values so that the modified values fit a
curve. The de-gamma operation performs the opposite operation to obtain linear pixel
values.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

G = visionhdl.GammaCorrector returns a System object that applies or removes
gamma correction on a stream of pixels.

G = visionhdl.GammaCorrector(Name,Value) returns a System object, G, with
additional options specified by one or more Name,Value pair arguments. Name is
a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

G = visionhdl.GammaCorrector(operation,gammaValue,Name,Value) returns
a System object with the Correction property set to operation, the Gamma property
set to gammaValue, and additional options specified by one or more Name,Value pair
arguments.

2-103

2 System Objects — Alphabetical List

Input Arguments

operation

Type of correction, specified as either 'Gamma' or 'De-gamma'. This argument sets the
Correction property value.

gammaValue

Target or current gamma value, specified as a scalar value greater than or equal to 1.
This argument sets the Gamma property value.

Output Arguments

G

visionhdl.GammaCorrector System object

Properties

Correction

Direction of intensity curve adjustment

• 'Gamma' (default) — Apply gamma correction.
• 'De-gamma' — Remove gamma correction.

Gamma

Target or current gamma value, specified as a scalar greater than or equal to 1.

• When you set Correction to 'Gamma', set this property to the target gamma value
of the output video stream.

• When you set Correction to 'De-gamma', set this property to the gamma value of
the input video stream.

Default: 2.2

2-104

 visionhdl.GammaCorrector System object

LinearSegment

Option to include a linear segment in the gamma curve, specified as a logical value.
When you set this property to true, the gamma curve has a linear portion near the
origin.

Default: true

BreakPoint

Pixel value that corresponds to the point where the gamma curve and linear segment
meet. Specify Breakpoint as a scalar value between 0 and 1, exclusive. This property
applies only when the LinearSegment property is set to true.

Default: 0.018

Methods

step Apply or remove gamma correction on one
pixel

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Gamma Correction

This example performs gamma correction on a thumbnail image.

2-105

2 System Objects — Alphabetical List

Load the source image from a file. Select a portion of the image matching the desired test
size.

frmOrig = imread('rice.png');

frmActivePixels = 64;

frmActiveLines = 48;

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

Create a serializer object and specify the size of inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

Create a gamma corrector object.

 gammacorr = visionhdl.GammaCorrector(...

2-106

 visionhdl.GammaCorrector System object

 'Gamma', 1.75);

Serialize the test image by calling the serializer object. pixIn is a vector of intensity
values. ctrlIn is a vector of control signal structures.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = zeros(numPixelsPerFrame,1,'uint8');

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the stream, compute the gamma corrected pixel value.

for p = 1:numPixelsPerFrame

 [pixOut(p),ctrlOut(p)] = gammacorr(pixIn(p),ctrlIn(p));

end

Create a deserializer object with a format matching that of the serializer. Convert the
pixel stream to an image frame by calling the deserializer object. Display the resulting
image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

2-107

2 System Objects — Alphabetical List

• “Accelerate a Pixel-Streaming Design Using MATLAB Coder”

Algorithm

This object implements the algorithms described on the Gamma Corrector block
reference page.

See Also

See Also
vision.GammaCorrector | visionhdl.FrameToPixels | Gamma Corrector | imadjust

Topics
“Accelerate a Pixel-Streaming Design Using MATLAB Coder”

Introduced in R2015a

2-108

 step

step
System object: visionhdl.GammaCorrector
Package: visionhdl

Apply or remove gamma correction on one pixel

Syntax

[pixelOut,ctrlOut] = step(correct_gamma,pixelIn,ctrlIn)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[pixelOut,ctrlOut] = step(correct_gamma,pixelIn,ctrlIn) returns the
intensity value of a pixel after gamma correction, and the control signals associated with
the pixel. The input, pixelIn, and output, pixelOut, are scalar values representing a
single pixel.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

2-109

2 System Objects — Alphabetical List

Input Arguments

correct_gamma — Gamma corrector
visionhdl.GammaCorrector System object

Specify a visionhdl.GammaCorrector System object that you created and configured.

pixelIn — Input pixel
scalar

Intensity of a single pixel, specified as a scalar value. For fixed-point data types, the
input word length must be less than or equal to 16.

Supported data types:

• int8 and int16
• uint8 and uint16
• fixdt()

double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn — Pixel stream control signals
structure

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut — Output pixel
scalar

Gamma-corrected intensity of a single pixel, specified as a scalar value. The data type of
the output pixel is the same as the data type of pixelIn.

ctrlOut — Pixel stream control signals
structure

2-110

 step

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

2-111

2 System Objects — Alphabetical List

visionhdl.Histogram System object
Package: visionhdl

Frequency distribution

Description

visionhdl.Histogram computes the frequency distribution of pixel values in a video
stream. You can configure the number and size of the bins. The object provides a read
interface for accessing each bin. The object keeps a running histogram until you clear the
bin values.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface allows object operation independent of image size and format,
and easy connection with other Vision HDL Toolbox objects. The step method accepts
pixel data as integer, fixed-point, or floating-point data types. The step method accepts
control signals as a structure containing five signals. These signals indicate the validity
of each pixel and the location of each pixel in the frame.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

H = visionhdl.Histogram returns a System object, H, that computes image
histograms over 256 bins, with a bin size of 16 bits.

H = visionhdl.Histogram(Name,Value) returns a System object, H, with
additional options specified by one or more Name,Value pair arguments. Name is
a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

2-112

 visionhdl.Histogram System object

Properties

NumBins

Number of bins for the histogram.

Choose the number of bins depending on the input word length (WL). If the number of
bins is less than 2WL, the object truncates the least-significant bits of each pixel. If the
number of bins is greater than 2WL, the object warns about an inefficient use of hardware
resources.

Default: 256

OutputDataType

Data type of the histogram values.

• double

• single

• Unsigned fixed point (default)

double and single data types are supported for simulation but not for HDL code
generation.

OutputWordLength

Histogram bin value word length when OutputDataType is Unsigned fixed point.
If a bin overflows, the count saturates and the object shows a warning.

Default: 16

Methods

step Sort input pixel into histogram bin, or read
histogram bin

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object

2-113

2 System Objects — Alphabetical List

Common to All System Objects

getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Compute Histogram of an Image

Set the dimensions of the test image, and load a source image. Select a portion of the
image matching the desired test size.

frmActivePixels = 64;

frmActiveLines = 48;

frmOrig = imread('rice.png');

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

Create a serializer object and define inactive pixel regions. Then, create a histogram
object. The default setting is 256 bins.

2-114

 visionhdl.Histogram System object

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

histo = visionhdl.Histogram();

bins = str2double(histo.NumBins);

Serialize the test image. pixIn is a vector of intensity values and ctrlIn is a vector of
control signal structures. Initialize output signals for the histogram results.

Note: This syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

readRdy = false(numPixelsPerFrame,1);

dataOut = zeros(bins-1,1,'uint8');

validOut = false(bins-1,1);

noOpCtrl = pixelcontrolstruct(0,0,0,0,0);

noAddr = uint8(0);

noReset = false;

Call the object with dummy input to initialize the bin memory.

for p = 1:bins

 histo(uint8(0),noOpCtrl,noAddr,noReset);

end

For each pixel in the padded frame, sort the pixel into a bin. readRdy is returned true 2
cycles after the active frame is complete.

for p = 1:numPixelsPerFrame

 [~,readRdy(p),~] = histo(pixIn(p),ctrlIn(p),noAddr,noReset);

end

Once the frame is complete, as indicated by readRdy, read the bin values.

2-115

2 System Objects — Alphabetical List

if readRdy(numPixelsPerFrame)

 for p = 1:bins+1

 if (p < bins-1)

 % Read a normal bin

 % Bin addresses are 0:bins-1

 [dataOut(p),~,validOut(p)] = histo(uint8(0),noOpCtrl,uint8(p-1),noReset);

 elseif (p == bins-1)

 % Read the final bin value and initiate binReset

 [dataOut(p),~,validOut(p)] = histo(uint8(0),noOpCtrl,uint8(bins-1),true);

 elseif (p >= bins)

 % Flush final bin values with 2 more calls

 [dataOut(p),~,validOut(p)] = histo(uint8(0),noOpCtrl,noAddr,noReset);

 end

 end

end

Graph the bin values.

dataOut = dataOut(validOut==1);

figure

bar(dataOut)

title('Histogram of Input Image')

2-116

 visionhdl.Histogram System object

Call the object with dummy input to clear the bin memory.

for p = 1:bins-2

 histo(uint8(0),noOpCtrl,noAddr,noReset);

end

Algorithm

This object implements the algorithms described on the Histogram block reference page.

2-117

2 System Objects — Alphabetical List

See Also
Histogram | visionhdl.FrameToPixels | vision.Histogram | imhist

Introduced in R2015a

2-118

 step

step
System object: visionhdl.Histogram
Package: visionhdl

Sort input pixel into histogram bin, or read histogram bin

Syntax
step(histogram,~,~,~,~)

[dataOut,readRdy,validOut] = step(histogram,pixelIn,ctrlIn,~,0)

[dataOut,readRdy,validOut] = step(histogram,~,~,binAddr,0)

[dataOut,readRdy,validOut] = step(histogram,~,~,binAddr,binReset)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

step(histogram,~,~,~,~) performs an initial reset phase before processing input
data. After object creation or reset, call step with dummy arguments for NumberOfBins
cycles before applying data. You do not have to assert binReset during this phase.

[dataOut,readRdy,validOut] = step(histogram,pixelIn,ctrlIn,~,0) adds
the input pixel, pixelIn, to the internal histogram. Call step with this syntax for each
pixel in a frame. The object returns readRdy true when the histogram for the frame is
complete.

[dataOut,readRdy,validOut] = step(histogram,~,~,binAddr,0) reads the
histogram bin specified by binAddr. Use this syntax when readRdy is returned true.
Call step with this syntax for each histogram bin. The bin value at binAddr is returned
in dataOut, with validOut set to true, after two further calls to step.

[dataOut,readRdy,validOut] = step(histogram,~,~,binAddr,binReset)

resets the histogram values when binReset is true. You can initiate the reset while

2-119

2 System Objects — Alphabetical List

simultaneously giving the final binAddr. Before applying more video data, complete the
reset sequence by calling step with dummy arguments for NumBins cycles.

To visualize the sequence of operations, see the timing diagrams in the “Algorithm” on
page 1-75 section of the Histogram block page.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments

histogram — Analyzer
visionhdl.Histogram System object

Specify a visionhdl.Histogram System object that you created and configured.

pixelIn — Input pixel
scalar

Single pixel, specified by a scalar value.

Supported data types:

• uint

• fixdt(0,N,0)

• double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn — Pixel stream control signals
structure

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

binAddr — Bin number
scalar integer

2-120

 step

Bin number request for reading histogram values. This input is captured after readRdy
is returned true. The data type is fixdt(0,N,0), N = 5,6,...,10. The word length must
be log2(NumBins).

binReset — Reset request
scalar logical

Triggers histogram RAM reset when true. Reset takes NumBins cycles to clear all
locations. Input signals are ignored during this interval. Data type is logical.

Output Arguments

readRdy — Indicates ready for read
scalar logical

Flag indicating when the histogram bins are ready for read, returned as a logical
value. The object returns readRdy set to true two cycles after the final pixel of a frame.

dataOut — Histogram value
scalar

Histogram value for the bin requested in binAddr. The OutputDataType property
specifies the data type for this output.

validOut — Indicates valid output data
scalar logical

Flag indicating the validity of dataOut, returned as a logical value.

Introduced in R2015a

2-121

2 System Objects — Alphabetical List

visionhdl.ImageFilter System object

Package: visionhdl

2-D FIR filtering

Description

visionhdl.ImageFilter performs two-dimensional FIR filtering on a pixel stream.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

F = visionhdl.ImageFilter returns a System object, F, that performs two-
dimensional FIR filtering on an input pixel stream.

F = visionhdl.ImageFilter(Name,Value) returns a 2-D FIR filter System object,
F, with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

F = visionhdl.ImageFilter(coeff,lineSize,Name,Value) returns a 2-
D FIR filter System object, F, with the Coefficients property set to coeff, the
LineBufferSize property to lineSize, and additional options specified by one or more
Name,Value pair arguments.

2-122

 visionhdl.ImageFilter System object

Input Arguments

coeff

Filter coefficients, specified as a vector or matrix. The maximum size along any
dimension of this matrix or vector is 16. This argument sets the Coefficients property
value.

lineSize

Size of the line memory buffer, specified as a power of two that accommodates the
number of active pixels in a horizontal line. This argument sets the LineBufferSize
property value.

Output Arguments

F

visionhdl.ImageFilter System object

Properties

Coefficients

Coefficients of the filter, specified as a vector or matrix of any numeric type. The
maximum size along any dimension of this matrix or vector is 16.

double and single data types are supported for simulation but not for HDL code
generation.

Default: [1,0;0,-1]

CoefficientsDataType

Method for determining the data type of the filter coefficients.

• 'Same as first input'' (default) — Sets the data type of the coefficients to match
the data type of the pixelIn argument of the step method.

• 'custom' — Sets the data type of the coefficients to match the data type defined in
the CustomCoefficientsDataType property.

2-123

2 System Objects — Alphabetical List

CustomCoefficientsDataType

Data type for the filter coefficients, specified as numerictype(signed,WL,FL), where
WL is the word length and FL is the fraction length in bits. This property applies when
you set CoefficientsDataType to 'custom'.

Default: numerictype(true,16,15)

CustomOutputDataType

Data type for the output pixels, specified as numerictype(signed,WL,FL), where WL
is the word length and FL is the fraction length in bits. This property applies only when
you set OutputDataType to custom.

Default: numerictype(true,8,0)

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. The object allocates (coefficient rows – 1)-by-LineBufferSize memory
locations to store the pixels.

Default: 2048

OutputDataType

Method for determining the data type of the output pixels.

• 'Same as first input' (default) — Sets the data type of the output pixels to
match the data type of the pixelIn argument of the step method.

• 'full precision' — Computes internal and output data types using full precision
rules. These rules provide accurate fixed-point numerics and prevent quantization
within the object. Bits are added, as needed, to prevent rounding and overflow.

• 'custom' — Sets the data type of the output pixels to match the data type you define
in the CustomOutputDataType property.

OverflowAction

Overflow action used for fixed-point operations.

2-124

 visionhdl.ImageFilter System object

The object uses fixed-point arithmetic for internal calculations when the input is any
integer or fixed-point data type. This option does not apply when the input data type is
single or double.

Default: Wrap

PaddingMethod

Method for padding the boundary of the input image. See “Edge Padding”.

• 'Constant' (default) — Pads the input matrix with a constant value.
• 'Replicate' — Repeats the value of pixels at the edge of the image.
• 'Symmetric' — Pads the input matrix with its mirror image.

PaddingValue

Constant value used to pad the boundary of the input image. This property applies when
you set PaddingMethod to 'Constant'. The object casts this value to the same data
type as the input pixel.

Default: 0

RoundingMethod

Rounding mode used for fixed-point operations.

The object uses fixed-point arithmetic for internal calculations when the input is any
integer or fixed-point data type. This option does not apply when the input data type is
single or double.

Default: Floor

Methods

step 2-D FIR filtering

Common to All System Objects

clone Create System object with same property values

2-125

2 System Objects — Alphabetical List

Common to All System Objects

getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Filter a Pixel-Stream

This example implements a 2-D blur filter on a thumbnail image.

Load the source image from a file. Select a portion of the image matching the desired test
size.

frmOrig = imread('rice.png');

frmActivePixels = 64;

frmActiveLines = 48;

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

2-126

 visionhdl.ImageFilter System object

Create a serializer object and specify the size of the inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

Create a filter object.

 filt2d = visionhdl.ImageFilter(...

 'Coefficients',ones(2,2)/4,...

 'CoefficientsDataType','Custom',...

 'CustomCoefficientsDataType',numerictype(0,1,2),...

 'PaddingMethod','Symmetric');

Serialize the test image by calling the serializer object. pixIn is a vector of intensity
values. ctrlIn is a vector of control signal structures.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = zeros(numPixelsPerFrame,1,'uint8');

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the filtered value. Monitor the control
signals to determine latency of the object. The latency of a filter configuration depends
on:

• The number of active pixels in a line.
• The size of the filter kernel.
• Optimization of symmetric or duplicate coefficients.

2-127

2 System Objects — Alphabetical List

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = filt2d(pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =

 'object latency is 101 cycles'

Create a deserializer object with a format matching that of the serializer. Convert the
pixel stream to an image frame by calling the deserializer object. Display the resulting
image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

2-128

 visionhdl.ImageFilter System object

Algorithm

This object implements the algorithms described on the Image Filter block reference
page.

See Also
Image Filter | visionhdl.FrameToPixels | vision.ImageFilter | imfilter

Introduced in R2015a

2-129

2 System Objects — Alphabetical List

step
System object: visionhdl.ImageFilter
Package: visionhdl

2-D FIR filtering

Syntax

[pixelOut,ctrlOut] = step(filt,pixelIn,ctrlIn)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[pixelOut,ctrlOut] = step(filt,pixelIn,ctrlIn) returns the next pixel,
pixelOut, of the filtered image resulting from applying the coefficients in the
Coefficients property to the image described by the input pixel stream, pixelIn.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments

filt — Filter
visionhdl.ImageFilter System object

Specify a visionhdl.ImageFilter System object that you created and configured.

2-130

 step

pixelIn — Input pixel
scalar

Single pixel, specified as a scalar value.

Supported data types:

• uint or int
• fixdt()

• double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn — Pixel stream control signals
structure

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut — Output pixel
scalar

Single filtered pixel, returned as a scalar value.

Configure the data type of the output pixel by using the OutputDataType and
CustomOutputDataType properties.

ctrlOut — Pixel stream control signals
structure

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

2-131

2 System Objects — Alphabetical List

visionhdl.ImageStatistics System object

Package: visionhdl

Mean, variance, and standard deviation

Description

visionhdl.ImageStatistics calculates the mean, variance, and standard deviation
of streaming video data. Each calculation is performed over all pixels in the input region
of interest (ROI). The object implements the calculations using hardware-efficient
algorithms.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface allows object operation independent of image size and format,
and easy connection with other Vision HDL Toolbox objects. The step method accepts
pixel data as integer, fixed-point, or floating-point data types. The step method accepts
control signals as a structure containing five signals. These signals indicate the validity
of each pixel and the location of each pixel in the frame.

• To change the size and dimensions of the ROI, you can manipulate the input video
stream control signals. See “Regions of Interest” on page 1-90.

• The number of valid pixels in the input image affect the accuracy of the mean
approximation. To avoid approximation error, use an image that contains fewer
than 64 pixels, a multiple of 64 pixels up to 642 pixels, a multiple of 4096 pixels up
to 643 pixels, or a multiple of 643 pixels up to 644 pixels. For details of the mean
approximation, see “Algorithm” on page 1-85.

• The object calculates statistics over frames up to 644 (16,777,216) pixels in size.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

2-132

 visionhdl.ImageStatistics System object

Construction
S = visionhdl.ImageStatistics returns a System object, S, that calculates the
mean, variance, and standard deviation of each frame of a video stream.

S = visionhdl.ImageStatistics(Name,Value) returns a System object, S,
with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

Properties

mean

Calculate the mean of each input frame. If you set this property to false, the step
method does not return this output.

Default: true

variance

Calculate the variance of each input frame. If you set this property to false, the step
method does not return this output.

Default: true

stdDev

Calculate the standard deviation of each input frame. If you set this property to false,
the step method does not return this output.

Default: true

Methods
step Calculate the contribution of one pixel to

the mean, variance, and standard deviation
of a video stream

2-133

2 System Objects — Alphabetical List

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Compute Statistics of an Image

This example computes the mean, variance, and standard deviation of a thumbnail
image.

Load the source image from a file. Select a portion of the image matching the desired test
size.

frmOrig = imread('rice.png');

frmActivePixels = 64;

frmActiveLines = 48;

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

2-134

 visionhdl.ImageStatistics System object

Create a serializer object and define inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

Create an object that returns mean, variance, and standard deviation.

 stats = visionhdl.ImageStatistics();

Serialize the test image by calling the serializer object. pixIn is a vector of intensity
values. ctrlIn is a vector of control signal structures.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

2-135

2 System Objects — Alphabetical List

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

validOut = false(numPixelsPerFrame,1);

mean = zeros(numPixelsPerFrame,1,'uint8');

variance = zeros(numPixelsPerFrame,1,'uint8');

stddev = zeros(numPixelsPerFrame,1,'uint8');

For each pixel in the stream, increment the internal statistics.

for p = 1:numPixelsPerFrame

 [mean(p),variance(p),stddev(p),validOut(p)] = stats(pixIn(p),ctrlIn(p));

end

The results are valid when validOut is returned true.

mean = mean(validOut==1)

variance = variance(validOut==1)

stddev = stddev(validOut==1)

mean =

 uint8

 125

variance =

 uint8

 255

stddev =

 uint8

 36

Algorithm
This object implements the algorithms described on the Image Statistics block
reference page.

2-136

 visionhdl.ImageStatistics System object

See Also
Image Statistics | vision.Variance | visionhdl.FrameToPixels | vision.Mean |
vision.StandardDeviation | mean2 | std2

Introduced in R2015a

2-137

2 System Objects — Alphabetical List

step

System object: visionhdl.ImageStatistics
Package: visionhdl

Calculate the contribution of one pixel to the mean, variance, and standard deviation of a
video stream

Syntax

[mean,variance,stdDeviation,validOut] =

step(statistics,pixelIn,ctrlIn)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[mean,variance,stdDeviation,validOut] =

step(statistics,pixelIn,ctrlIn) incorporates the new pixel value, pixelIn,
into calculations of video frame statistics. The control signals associated with each pixel,
ctrlIn, indicate the frame boundaries. When validOut is true, the output values
of mean, variance, and stdDeviation represent the statistics for the most recent
input frame completed. The number of statistics returned depends on the object property
settings.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface allows object operation independent of image size and format,
and easy connection with other Vision HDL Toolbox objects. The step method accepts
pixel data as integer, fixed-point, or floating-point data types. The step method accepts
control signals as a structure containing five signals. These signals indicate the validity
of each pixel and the location of each pixel in the frame.

2-138

 step

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments

statistics — Analyzer
visionhdl.ImageStatistics System object

Specify a visionhdl.ImageStatistics System object that you created and configured.

pixelIn — Input pixel
scalar

Single pixel, specified as a scalar value.

Supported data types:

• uint8 or uint16
• fixdt(0,N,0), N = 8,9,...,16
• double and single data types are supported for simulation but not for HDL code

generation.

ctrlIn — Pixel stream control signals
structure

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

mean — Mean
scalar

Mean of the most recent frame of video input, returned as a scalar value.

2-139

2 System Objects — Alphabetical List

The data type is the same as pixelIn.

variance — Variance
scalar

Variance of the most recent frame of video input, returned as a scalar value.

The data type is the same as pixelIn. The fixed-point output word length is double the
input word length.

stdDeviation — Standard deviation
scalar

Standard deviation of the most recent frame of video input, returned as a scalar value.

The data type is the same as pixelIn. Fixed-point output word length is double the
input word length.

validOut — Indicates valid output data
scalar logical

Validity of output statistics. When the object completes the calculations, it returns true.
When this output is true, the other output arguments are valid. Data type is logical.

Introduced in R2015a

2-140

 visionhdl.LookupTable System object

visionhdl.LookupTable System object
Package: visionhdl

Map input pixel to output pixel using custom rule

Description
The visionhdl.LookupTable System object uses a custom one-to-one map to convert
between an input pixel value and an output pixel value.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
LUT = visionhdl.LookupTable returns a System object, LUT, that performs a one-
to-one mapping between the input pixel and output pixel, according to the lookup table
contents.

LUT = visionhdl.LookupTable(tabledata) returns a lookup table System object,
LUT, with the table contents set to TABLEDATA.

Input Arguments

tabledata

One-to-one correspondence between input pixels and output pixels, specified as a vector.
This argument sets the Table property value.

2-141

2 System Objects — Alphabetical List

Output Arguments

LUT

visionhdl.visionhdl.LookupTable System object

Properties

Table

Map between input pixel values and output pixel values.

• The table data is a vector, row or column, of any data type. The data type of the table
data determines that of pixelOut. See visionhdl.LookupTable.step method.

• The length of the table data must equal 2WordLength, where WordLength is the size, in
bits, of pixelIn. See visionhdl.LookupTable.step method.

• The smallest representable value of the input data type maps to the first element
of the table, the second smallest value maps to the second element, and so on. For
example, if pixelIn has a data type of fixdt(0,3,1), the input value 0 maps to the
first element of the table, input value 0.5 maps to the second element, 1 maps to the
third, and so on.

Default: uint8(0:1:255)

Methods

step Map input pixel to output pixel based on
table contents

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

2-142

 visionhdl.LookupTable System object

Examples

Compute Negative Image

This example creates the negative of an image by looking up the opposite pixel values in
a table.

Set dimensions of test image, and load an image source. Select a portion of the image
matching the desired test size.

frmActivePixels = 64;

frmActiveLines = 48;

frmOrig = imread('rice.png');

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

Create a serializer object and define inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

2-143

2 System Objects — Alphabetical List

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

Create a lookup table object. The input pixel data is uint8 type, so the negative value
is 255-|pixel|. The output pixel data type is the same as the data type of the table
contents.

tabledata = uint8(linspace(255,0,256));

inverter = visionhdl.LookupTable(tabledata);

Serialize the test image. pixIn is a vector of intensity values. ctrlIn is a vector of
control signal structures.

Note: This syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare variables to process pixels. Then, for each pixel in the padded frame, look up the
negative value.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = zeros(numPixelsPerFrame,1,'uint8');

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

for p = 1:numPixelsPerFrame

 [pixOut(p),ctrlOut(p)] = inverter(pixIn(p),ctrlIn(p));

end

Create deserializer object with a video format matching that of the serializer. Convert
the output pixel stream to an image frame, and display the result.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

2-144

 visionhdl.LookupTable System object

Algorithm

This object implements the algorithms described on the Lookup Table block reference
page.

See Also
Lookup Table | visionhdl.FrameToPixels

Introduced in R2015a

2-145

2 System Objects — Alphabetical List

step
System object: visionhdl.LookupTable
Package: visionhdl

Map input pixel to output pixel based on table contents

Syntax

[pixelOut,ctrlOut] = step(LUT,pixelIn,ctrlIn)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[pixelOut,ctrlOut] = step(LUT,pixelIn,ctrlIn) returns the pixel value,
pixelOut, located in the table at the address specified by the input pixel value,
pixelIn. The object passes the control signals, ctrlIn, through and aligns the output
control signals, ctrlOut, with the output data.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

2-146

 step

Input Arguments

LUT — Look up table
visionhdl.LookupTable System object

Specify a visionhdl.LookupTable System object that you created and configured.

pixelIn — Input pixel
scalar

Input pixel, specified as a scalar value. For unsigned fixed-point data types, the input
word length must be less than or equal to 16.

Supported data types:

• logical

• uint8 or uint16
• fixdt()

ctrlIn — Pixel stream control signals
structure

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut — Output pixel
scalar

Output pixel, returned as a scalar value. The data type of the output is the same as the
data type of the entries you specify in the Table property.

ctrlOut — Pixel stream control signals
structure

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

2-147

2 System Objects — Alphabetical List

Introduced in R2015a

2-148

 visionhdl.MeasureTiming System object

visionhdl.MeasureTiming System object
Package: visionhdl

Measure timing of pixel control structure input

Description

The visionhdl.MeasureTiming object measures the timing parameters of a video
stream. The Vision HDL Toolbox streaming pixel protocol implements the timing of a
video system, including inactive intervals between frames. These inactive intervals are
called blanking intervals. Many Vision HDL Toolbox objects require minimum blanking
intervals. You can use the timing parameter measurements from this object to check
that your video stream meets these requirements. If you manipulate the control signals
of your video stream, you can use this object to verify the resulting control signals. To
determine the parameters of each frame, the object measures time steps between the
control signals in the input structure.

For details on the pixel control bus and the dimensions of a video frame, see “Streaming
Pixel Interface”.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

measure = visionhdl.MeasureTiming returns a System object, measure, that
measures the average frame timing of a video stream.

Methods

step Measure timing of pixel control structure
input

2-149

2 System Objects — Alphabetical List

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Measure Timing Parameters of Custom Video Stream

This example shows how to use the MeasureTiming object to observe the frame
parameters in a custom video stream. The example creates customized padding around
an image frame and converts the frame to streaming video. It uses the MeasureTiming
object to confirm that the streaming video parameters match the custom settings.

Use a FrameToPixels object to specify a small custom-size frame with customized
blanking intervals. To obtain a frame of this size, select a small section of the input
image.

frm2pix = visionhdl.FrameToPixels(...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',32,...

 'ActiveVideoLines',18,...

 'TotalPixelsPerLine',42,...

 'TotalVideoLines',26,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

[actPixPerLine,actLine,numPixPerFrm] = getparamfromfrm2pix(frm2pix);

frmFull = imread('rice.png');

frmIn = frmFull(74:73+actLine,104:103+actPixPerLine);

imshow(frmIn)

2-150

 visionhdl.MeasureTiming System object

Create a MeasureTiming object to observe the parameters of the serial pixel output from
the FrameToPixels object.

measure = visionhdl.MeasureTiming;

Serialize the input frame.

[pixInVec,ctrlInVec] = frm2pix(frmIn);

Some parameters require measurements between frames, so you must simulate at least
two frames before using the results. Because you serialized only one input frame, process
that frame twice to measure all parameters correctly.

for f = 1:2

 for p = 1:numPixPerFrm

 [activePixels,activeLines,totalPixels,totalLines,...

 horizBlank,vertBlank] = measure(ctrlInVec(p));

 end

 fprintf('\nFrame %d:\n',f)

 fprintf('activePixels: %f\n',activePixels)

 fprintf('activeLines: %f\n',activeLines)

 fprintf('totalPixels: %f\n',totalPixels)

 fprintf('totalLines: %f\n',totalLines)

 fprintf('horizBlank: %f\n',horizBlank)

 fprintf('vertBlank: %f\n',vertBlank)

end

Frame 1:

activePixels: 32.000000

activeLines: 18.000000

totalPixels: 42.000000

totalLines: 22.880952

horizBlank: 10.000000

vertBlank: 4.880952

2-151

2 System Objects — Alphabetical List

Frame 2:

activePixels: 32.000000

activeLines: 18.000000

totalPixels: 42.000000

totalLines: 26.000000

horizBlank: 10.000000

vertBlank: 8.000000

The measurements after the first frame are not accurate. However, after the second
frame, the measurements match the parameters chosen in the FrameToPixels object.

See Also
Measure Timing | visionhdl.FrameToPixels

Introduced in R2016b

2-152

 step

step
System object: visionhdl.MeasureTiming
Package: visionhdl

Measure timing of pixel control structure input

Syntax

[activePixels,activeLines,totalPixels,totalLines,horizBlank,vertBlank]

= step(measure,ctrlIn)

Description

Note: Alternatively, instead of using the step method to perform the operation defined
by the System object, you can call the object with arguments, as if it were a function. For
example, y = step(obj,x) and y = obj(x) perform equivalent operations.

[activePixels,activeLines,totalPixels,totalLines,horizBlank,vertBlank]

= step(measure,ctrlIn) incorporates the current pixel location into calculations of
video frame timing. The control signals, ctrlIn, associated with each pixel indicate the
location of this pixel relative to the active frame boundaries. The input object measures
the time steps between the control signals to determine the parameters of each frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments

measure — Timing analyzer
visionhdl.MeasureTiming System object

2-153

2 System Objects — Alphabetical List

Specify a visionhdl.MeasureTiming System object that you created and configured.

ctrlIn — Pixel stream control signals
structure

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

The diagram shows the output measurements, as determined from the pixel stream
control signals.

For details on the pixel control bus and the dimensions of a video frame, see “Streaming
Pixel Interface”.

Note: Measurements from the first simulated frame are incorrect because some
parameters require measurements between frames. Simulate at least two frames before
using the results.

activePixels — Number of active pixels per line
integer

This value is measured between hStart and hEnd. See marker 1 in the diagram.

activeLines — Number of active lines in the frame
integer

This value is measured as the number of hStart pulses between vStart and vEnd. See
marker 2 in the diagram.

2-154

 step

totalPixels — Number of pixels in the line
integer

This value is measured from hStart to the next hStart, including the horizontal
blanking interval. See marker 3 in the diagram.

totalLines — Number of lines in the frame
integer

This value is measured by the interval from vEnd to the next vEnd, divided by
totalPixels. It includes the vertical blanking interval. See marker 4 in the diagram.

horizBlank — Number of pixels in the horizontal blanking interval
integer

The horizontal blanking interval is the number of inactive pixels between lines of a
frame. This value is measured between hEnd and the next hStart. See marker 5 in the
diagram.

vertBlank — Number of lines in the vertical blanking interval
integer

The vertical blanking interval is the number of inactive lines between frames. This
value is measured from vEnd to the next vStart, adjusted to remove horizBlank, then
divided by totalPixels. See marker 6 in the diagram.

Introduced in R2016b

2-155

2 System Objects — Alphabetical List

visionhdl.MedianFilter System object
Package: visionhdl

2-D median filtering

Description
visionhdl.MedianFilter performs 2-D median filtering on a pixel stream. The object
replaces each pixel value with the median value of the adjacent pixels.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction
MF = visionhdl.MedianFilter returns a System object, MF, that performs two-
dimensional median filtering of serial pixel data.

MF = visionhdl.MedianFilter(Name,Value) returns a median filter System object,
MF, with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

MF = visionhdl.MedianFilter(size,Name,Value) returns a median filter System
object, MF, with the NeighborhoodSize property set to size and additional options
specified by one or more Name,Value pair arguments.

2-156

 visionhdl.MedianFilter System object

Input Arguments

size

Size in pixels of the image region used to compute the median. This argument sets the
NeighborhoodSize property value.

Output Arguments

MF

visionhdl.MedianFilter System object.

Properties

NeighborhoodSize

Neighborhood size, in pixels.

• '3×3' (default)
• '5×5'

• '7×7'

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of 2 that accommodates the number of active pixels in a horizontal line.
If you specify a value that is not a power of two, the object uses the next largest power of
two. The object allocates N - 1-by-LineBufferSize memory locations to store the pixels
used to compute the median value. N is the number of lines in the square region specified
in Neighborhood size.

Default: 2048

PaddingMethod

Method for padding the boundary of the input image

• 'Constant' — Pad input matrix with a constant value.

2-157

2 System Objects — Alphabetical List

• 'Replicate' — Repeat the value of pixels at the edge of the image.
• 'Symmetric' (default) — Pad image edge with its mirror image.

PaddingValue

Constant value used to pad the boundary of the input image. This property applies when
you set PaddingMethod to 'Constant'. The object casts this value to the same data
type as the input pixel.

Default: 0

Methods

step Median pixel value of neighborhood

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Median Filter on a Pixel-Stream

This example implements a 5×5 median filter on a thumbnail image.

Load the source image from a file. Select a portion of the image matching the desired test
size.

frmOrig = imread('rice.png');

frmActiveLines = 48;

frmActivePixels = 64;

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

2-158

 visionhdl.MedianFilter System object

title 'Input Image'

Create a serializer object and specify the size of the inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

Create a filter object and specify a neighbourhood.

 medianfilt = visionhdl.MedianFilter(...

 'NeighborhoodSize','5x5');

Serialize the test image by calling the serializer object. pixIn is a vector of intensity
values. ctrlIn is a vector of control signal structures.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

2-159

2 System Objects — Alphabetical List

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = zeros(numPixelsPerFrame,1,'uint8');

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the local median. Monitor control signals to
determine latency of the object. The latency of a filter configuration depends on:

• The number of active pixels in a line.
• The size of the neighbourhood.

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = medianfilt(pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =

 'object latency is 177 cycles'

Create a deserializer object with a format matching that of the serializer. Convert the
pixel stream to an image frame by calling the deserializer object. Display the resulting
image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

2-160

 visionhdl.MedianFilter System object

 title 'Output Image'

end

Algorithm

This object implements the algorithms described on the Median Filter block reference
page.

See Also
Median Filter | visionhdl.FrameToPixels | medfilt2

Introduced in R2015a

2-161

2 System Objects — Alphabetical List

step
System object: visionhdl.MedianFilter
Package: visionhdl

Median pixel value of neighborhood

Syntax

[pixelOut,ctrlOut] = step(medfilt,pixelIn,ctrlIn)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[pixelOut,ctrlOut] = step(medfilt,pixelIn,ctrlIn) returns the next pixel
value, pixelOut, in the filtered pixel stream resulting from calculating the median of
the neighborhood around each input pixel, pixelIn. Before filtering, the object pads
image edges according to the PaddingMethod property.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

2-162

 step

Input Arguments

medfilt — Filter
visionhdl.MedianFilter System object

Specify a visionhdl.MedianFilter System object that you created and configured.

pixelIn — Input pixel
scalar

Single pixel, specified as a scalar value.

Supported data types:

• uint or int
• fixdt(~,N,0)

• logical

• double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn — Pixel stream control signals
structure

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut — Output pixel
scalar

Single pixel value representing the median of its neighborhood, returned as a scalar
value.

The data type is the same as the data type of pixelIn.

ctrlOut — Pixel stream control signals
structure

2-163

2 System Objects — Alphabetical List

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

2-164

 visionhdl.Opening System object

visionhdl.Opening System object

Package: visionhdl

Morphological opening of binary pixel data

Description

visionhdl.Opening performs morphological erosion, followed by morphological
dilation, using the same neighborhood for both calculations. The object operates on a
stream of binary intensity values.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

O = visionhdl.Opening returns a System object, O, that performs morphological
opening on a binary pixel stream.

O = visionhdl.Opening(Name,Value) returns a System object, O, with additional
options specified by one or more Name,Value pair arguments. Name is a property
name and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

2-165

2 System Objects — Alphabetical List

Properties
Neighborhood

Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The object supports neighborhoods of up to 32×32 pixels. To use a structuring element,
specify Neighborhood as getnhood(strel(shape)).

Default: ones(3,3)

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. The object allocates (neighborhood lines – 1)-by-LineBufferSize memory
locations to store the pixels.

Default: 2048

Methods
step Report opened pixel value based on

neighborhood

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples
Morphological Open

Perform morphological open on a thumbnail image.

2-166

 visionhdl.Opening System object

Load a source image from a file. Select a portion of the image that matches the desired
test size. This source image contains uint8 pixel intensity values. Apply a threshold to
convert to binary pixel data.

frmOrig = imread('rice.png');

frmActivePixels = 64;

frmActiveLines = 48;

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

frmInput = frmInput>128;

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

Create a serializer object and define inactive pixel regions. Make the number of inactive
pixels following each active line at least double the horizontal size of the neighborhood.
Make the number of lines following each frame at least double the vertical size of the
neighborhood.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+20,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',3,...

2-167

2 System Objects — Alphabetical List

 'FrontPorch',10);

Create a filter object.

 mopen = visionhdl.Opening(...

 'Neighborhood',ones(5,5));

Serialize the test image by calling the serializer object. pixIn is a vector of intensity
values. ctrlIn is a vector of control signal structures.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = false(numPixelsPerFrame,1);

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the morphed value. Monitor the control
signals to determine latency of the object. The latency of a configuration depends on the
number of active pixels in a line and the size of the neighborhood

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = mopen(pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =

 'object latency is 372 cycles'

2-168

 visionhdl.Opening System object

Create a deserializer object with a format matching that of the serializer. Convert the
pixel stream to an image frame by calling the deserializer object. Display the resulting
image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

Algorithm

This object implements the algorithms described on the Opening block reference page.

See Also
visionhdl.Dilation | visionhdl.FrameToPixels | visionhdl.Erosion | visionhdl.Closing |
Opening | imopen

2-169

2 System Objects — Alphabetical List

Introduced in R2015a

2-170

 step

step

System object: visionhdl.Opening
Package: visionhdl

Report opened pixel value based on neighborhood

Syntax

[pixelOut,ctrlOut] = step(open,pixelIn,ctrlIn)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[pixelOut,ctrlOut] = step(open,pixelIn,ctrlIn) returns the next pixel value,
pixelOut, resulting from a morphological open operation on the neighborhood around
each input pixel, pixelIn.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

2-171

2 System Objects — Alphabetical List

Input Arguments

open — Morphological opener
visionhdl.Opening System object

Specify a visionhdl.Opening System object that you created and configured.

pixelIn — Input pixel
scalar

Single pixel, specified as a scalar logical value.

ctrlIn — Pixel stream control signals
structure

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut — Output pixel
scalar

Single pixel transformed by a morphological operation, returned as a scalar logical
value.

ctrlOut — Pixel stream control signals
structure

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2015a

2-172

 visionhdl.GrayscaleOpening System object

visionhdl.GrayscaleOpening System object
Package: visionhdl

Morphological opening of grayscale pixel data

Description

visionhdl.GrayscaleOpening performs morphological erosion, followed by
morphological dilation, using the same neighborhood for both calculations. The object
operates on a stream of pixel intensity values. You can specify a neighborhood, or
structuring element, of up to 32×32 pixels. For line, square, or rectangle structuring
elements more than 8 pixels wide, the object uses the Van Herk algorithm to find the
maximum and minimum. For structuring elements less than 8 pixels wide, or that
contain zero elements, the object implements a pipelined comparison tree to find the
maximum and minimum.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

O = visionhdl.GrayscaleOpening returns a System object, O, that performs
morphological opening on a pixel stream.

O = visionhdl.GrayscaleOpening(Name,Value) returns a System object, O,
with additional options specified by one or more Name,Value pair arguments. Name

2-173

2 System Objects — Alphabetical List

is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

Properties

Neighborhood

Pixel neighborhood, specified as a matrix or vector of ones and zeros.

The object supports neighborhoods of up to 32×32 pixels. To use a structuring element,
specify Neighborhood as getnhood(strel(shape)). The minimum neighborhood size
is a 2×2 matrix, or a 2×1 column vector. If the neighborhood is a row vector, it must be at
least 8 columns wide and contain no zeros.

Default: ones(3,3)

LineBufferSize

Size of the line memory buffer, specified as a scalar integer.

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next largest
power of two. The object allocates (neighborhood lines – 1)-by-LineBufferSize memory
locations to store the pixels.

Default: 2048

Methods

step Report opened pixel value based on
neighborhood

Common to All System Objects

clone Create System object with same property values

2-174

 visionhdl.GrayscaleOpening System object

Common to All System Objects

getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Grayscale Morphological Opening

Perform morphological opening on a grayscale thumbnail image.

Load a source image from a file. Select a portion of the image matching the desired test
size.

frmOrig = imread('rice.png');

frmActivePixels = 64;

frmActiveLines = 48;

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

2-175

2 System Objects — Alphabetical List

Create a serializer object and define the inactive pixel regions. Make the number
of inactive pixels following each active line at least double the horizontal size of the
neighborhood. Make the number of lines following each frame at least double the vertical
size of the neighborhood.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+20,...

 'TotalVideoLines',frmActiveLines+20,...

 'StartingActiveLine',3,...

 'FrontPorch',10);

Create a filter object.

mopen = visionhdl.GrayscaleOpening(...

 'Neighborhood',ones(2,7));

Serialize the test image by calling the serializer object. pixIn is a vector of intensity
values. ctrlIn is a vector of control signal structures.

Note: This syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = uint8(zeros(numPixelsPerFrame,1));

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, compute the morphed value. Monitor the control
signals to determine the latency of the object. The latency of a configuration depends on
the number of active pixels in a line and the size of the neighborhood.

foundValIn = false;

foundValOut = false;

for p = 1:numPixelsPerFrame

 if (ctrlIn(p).valid && foundValIn==0)

2-176

 visionhdl.GrayscaleOpening System object

 foundValIn = p;

 end

 [pixOut(p),ctrlOut(p)] = mopen(pixIn(p),ctrlIn(p));

 if (ctrlOut(p).valid && foundValOut==0)

 foundValOut = p;

 end

end

sprintf('object latency is %d cycles',foundValOut-foundValIn)

ans =

 'object latency is 222 cycles'

Create a deserializer object with a format matching that of the serializer. Convert the
pixel stream to an image frame by calling the deserializer object. Display the resulting
image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

2-177

2 System Objects — Alphabetical List

Algorithm

This object implements the algorithms described on the Grayscale Opening block
reference page.

See Also
visionhdl.GrayscaleDilation | visionhdl.GrayscaleClosing | Grayscale Opening |
visionhdl.FrameToPixels | visionhdl.GrayscaleErosion | imopen

Introduced in R2016a

2-178

 step

step

System object: visionhdl.GrayscaleOpening
Package: visionhdl

Report opened pixel value based on neighborhood

Syntax

[pixelOut,ctrlOut] = step(open,pixelIn,ctrlIn)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[pixelOut,ctrlOut] = step(open,pixelIn,ctrlIn) returns the next pixel value,
pixelOut, resulting from morphological opening on the neighborhood around each input
pixel intensity value, pixelIn.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

2-179

2 System Objects — Alphabetical List

Input Arguments

open — Morphological opener
visionhdl.GrayscaleOpening System object

Specify a visionhdl.GrayscaleOpening System object that you created and
configured.

pixelIn — Input pixel
scalar

Single pixel, specified as a scalar value.

Supported data types:

• uint8, uint16,uint32
• fixdt(0,N,M)

• double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn — Pixel stream control signals
structure

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

Output Arguments

pixelOut — Output pixel
scalar

Single pixel transformed by a morphological operation, returned as a scalar value.

The data type is the same as the data type of pixelIn.

ctrlOut — Pixel stream control signals
structure

2-180

 step

Control signals indicating the validity of the output pixel and the location of the pixel
within the frame, returned as a structure containing five logical signals. See “Pixel
Control Structure”.

Introduced in R2016a

2-181

2 System Objects — Alphabetical List

visionhdl.PixelStreamAligner System object

Package: visionhdl

Align two streams of pixel data

Description

The visionhdl.PixelStreamAligner System object synchronizes two pixel streams
by delaying one stream to match the timing of a reference stream. Many Vision HDL
Toolbox algorithms delay the pixel stream, and the amount of delay can change as you
adjust algorithm parameters. You can use this object to align streams for overlaying,
comparing, or combining two streams such as in a Gaussian blur operation. Use the
delayed stream as the refPixel and refCtrl arguments. Use the earlier stream as the
pixelIn and ctrlIn arguments.

This waveform diagram shows the input streams, pixelIn and refPixelIn, and their
associated control signals. The reference input frame starts later than the pixelIn
frame. The output signals show that the object delays pixelIn to match the reference
stream, and that both output streams share control signals. There is a short latency
between the input refCtrl and the output refCtrl. In this simulation, to accommodate
the delay of four lines between the input streams, the MaxNumberofLines must be set to
at least 4.

2-182

 visionhdl.PixelStreamAligner System object

For details on the pixel control bus and the dimensions of a video frame, see “Streaming
Pixel Interface”.

Construction
align = visionhdl.PixelStreamAligner returns a System object, align, that
synchronizes a pixel stream with a reference pixel stream.

Properties
LineBufferSize — Size of the line memory buffer
2048 (default) | scalar integer

Choose a power of two that accommodates the number of active pixels in a horizontal
line. If you specify a value that is not a power of two, the object uses the next
largest power of two. The object implements a circular buffer of 2M, where M is
MaxNumberofLines + log2(LineBufferSize) pixels.

MaxNumberOfLines — Buffer depth that accommodates the timing offset between input
streams
10 (default) | scalar integer

2-183

2 System Objects — Alphabetical List

The object implements a circular buffer of 2M, where M is MaxNumberofLines +
log2(LineBufferSize) pixels, and a line address buffer of MaxNumberofLines
locations. The circular memory stores the earlier input lines until the reference control
signals arrive. The line address buffer stores the address of the start of each line. When
the reference control signals arrive, the object uses the stored address to read and send
the delayed line. This parameter must accommodate the difference in timing between
the two input streams, including internal latency before the object reads the first line.
During simulation, the object warns when an overflow occurs. To avoid the overflow
condition, increase MaxNumberofLines. The delay between streams cannot exceed an
entire frame.

Methods

step Align two streams of pixel data

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Align Pixel Streams for HDL Generation

Overlay a processed video stream on the input stream.

Prepare a test image by selecting a portion of an image file.

frmActivePixels = 64;

frmActiveLines = 48;

frmOrig = imread('rice.png');

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

2-184

 visionhdl.PixelStreamAligner System object

title 'Input Image'

Create a serializer and specify the size of inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1, ...

 'VideoFormat','custom', ...

 'ActivePixelsPerLine',frmActivePixels, ...

 'ActiveVideoLines',frmActiveLines, ...

 'TotalPixelsPerLine',frmActivePixels+10, ...

 'TotalVideoLines',frmActiveLines+10, ...

 'StartingActiveLine',6, ...

 'FrontPorch',5);

Serialize the test image using the object you created. pixIn is a vector of intensity
values. ctrlIn is a vector of control signal structures. Preallocate vectors for the output
signals.

[pixIn,ctrlIn] = frm2pix(frmInput);

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

overlayOut = zeros(numPixelsPerFrame,1,'uint8');

Write a function that creates and calls the System objects to detect edges and then align
the edge data with the original pixel data. The edge results are delayed by the latency

2-185

2 System Objects — Alphabetical List

of the EdgeDetector object. The associated control signals become the reference for the
aligned stream. You can generate HDL from this function.

function [pixelOut,ctrlOut] = EdgeDetectandOverlay(pixelIn,ctrlIn)

%EdgeDetectandOverlay

% Detects edges in an input stream, and overlays the edge data onto the

% original stream.

% pixelIn, ctrlIn are a scalar pixel and its associated pixelcontrol structure

% You can generate HDL code from this function.

 persistent align

 if isempty(align)

 align = visionhdl.PixelStreamAligner;

 end

 persistent find_edges

 if isempty(find_edges)

 find_edges = visionhdl.EdgeDetector;

 end

 [edgeOut,edgeCtrl] = find_edges(pixelIn,ctrlIn);

 [origOut,alignedEdgeOut,ctrlOut] = align(pixelIn,ctrlIn,edgeOut,edgeCtrl);

 if (alignedEdgeOut)

 pixelOut = uint8(0); % set edge pixels to black

 else

 pixelOut = origOut;

 end

end

For each pixel in the frame, call your function to search for edges and align with the
input stream.

for p = 1:numPixelsPerFrame

 [overlayOut(p),ctrlOut(p)] = EdgeDetectandOverlay(pixIn(p),ctrlIn(p));

end

Create a deserializer object with a format matching that of the serializer. Convert the
pixel stream to an image frame by calling the deserializer object. Display the resulting
image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1, ...

 'VideoFormat','custom', ...

2-186

 visionhdl.PixelStreamAligner System object

 'ActivePixelsPerLine',frmActivePixels, ...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = pix2frm(overlayOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput, 'InitialMagnification',300)

 title 'Output Image'

end

See Also

See Also

Blocks
Pixel Stream Aligner

System Objects
visionhdl.FrameToPixels

Introduced in R2017a

2-187

2 System Objects — Alphabetical List

step
System object: visionhdl.PixelStreamAligner
Package: visionhdl

Align two streams of pixel data

Syntax

[pixelOut,refOut,ctrlOut] = step(align,pixelIn,ctrlIn,refPixel,

refCtrl)

Description

Note: Alternatively, instead of using the step method to perform the operation defined
by the System object, you can call the object with arguments, as if it were a function. For
example, y = step(obj,x) and y = obj(x) perform equivalent operations.

[pixelOut,refOut,ctrlOut] = step(align,pixelIn,ctrlIn,refPixel,

refCtrl) synchronizes a pixel stream to a reference stream by delaying the first input,
pixel, to align with the reference input, refPixel. The resulting aligned pixel streams
share control signals. You can use this object to align streams for overlay or comparison.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

Input Arguments

align — Aligner
visionhdl.PixelStreamAligner System object

2-188

 step

Specify a visionhdl.PixelStreamAligner System object that you created and
configured.

pixelIn — Input pixel
scalar | vector

Input pixel, specified as a vector of three values representing R'G'B' or Y'CbCr, or a
scalar value representing intensity. The object delays this pixel stream to match the
control signals of the reference stream, refPixel. Therefore, pixelIn must be the
earlier of the two streams.

Supported data types:

• logical

• uint and int
• fixdt()

• double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn — Pixel stream control signals
structure

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

refPixel — Input pixel
scalar | vector

Input pixel, specified as a vector of three values representing R'G'B' or Y'CbCr, or a
scalar value representing intensity. The object delays the pixelIn input stream to
match the reference control signals. Therefore, refPixel must be the later of the two
streams. The reference data and its control signals pass through the object with a small
delay.

Supported data types:

• logical

• uint and int
• fixdt()

2-189

2 System Objects — Alphabetical List

• double and single data types are supported for simulation but not for HDL code
generation.

refCtrl — Pixel stream control signals
structure

Control signals indicating the validity of the reference pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. The object
uses these control signals for the aligned output stream. See “Pixel Control Structure”.

Output Arguments

pixelOut — Output pixel
scalar | vector

Single pixel, returned as a vector of three values representing R'G'B' or Y'CbCr, or a
scalar value representing intensity.

The data type is the same as the data type of pixelIn.

refOut — Output reference pixel
scalar | vector

Single pixel, returned as a vector of three values representing R'G'B' or Y'CbCr, or a
scalar value representing intensity.

The data type is the same as the data type of refIn.

ctrlOut — Pixel stream control signals
structure

Control signals for both output streams, returned as a structure containing five logical
signals. See “Pixel Control Structure”. These signals are the same as the refCtrl input.

Introduced in R2017a

2-190

 visionhdl.PixelsToFrame System object

visionhdl.PixelsToFrame System object
Package: visionhdl

Convert pixel stream to frame-based video

Description

visionhdl.visionhdl.PixelsToFrame converts a color or grayscale pixel stream and
control structures into frame-based video. The control structure indicates the validity
of each pixel and its location in the frame. The pixel stream format can include padding
pixels around the active frame. You can configure the frame and padding dimensions by
selecting a common video format or specifying custom dimensions. See “Streaming Pixel
Interface” for details of the pixel stream format.

Use this object to convert the output of a function targeted for HDL code generation back
to frames. This object does not support HDL code generation.

If your design converts frames to a pixel stream and later converts the stream back
to frames, specify the same video format for the FrameToPixels object and the
PixelsToFrame object.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

P2F = visionhdl.PixelsToFrame returns a System object, P2F, that converts a
1080p pixel stream, with standard padding, to a grayscale 1080×1920 frame.

P2F = visionhdl.PixelsToFrame(Name,Value) returns a System object, P2F,
with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order

2-191

2 System Objects — Alphabetical List

as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

Properties

NumComponents

Components of each pixel, specified as 1, 3, or 4. Set to 1 for grayscale video. Set to 3 for
color video, for example, {R,G,B} or {Y,Cb,Cr}. Set to 4 to use color with an alpha channel
for transparency. The step method expects a matrix of P-by-NumComponents values,
where P is the total number of pixels. The default is 1.

VideoFormat

Dimensions of the active region of a video frame. To select a predefined format, specify
the VideoFormat property as one of the options in the first column of the table. For a
custom format, set VideoFormat to 'Custom', and specify the dimensional properties
as integers.

Video Format Active Pixels

Per Line

Active Video Lines

240p 320 240
480p 640 480
480pH 720 480
576p 720 576
720p 1280 720
768p 1024 768
1024p 1280 1024
1080p (default) 1920 1080
1200p 1600 1200
2KCinema 2048 1080
4KUHDTV 3840 2160
8KUHDTV 7680 4320

2-192

 visionhdl.PixelsToFrame System object

Video Format Active Pixels

Per Line

Active Video Lines

Custom User-
defined

User-
defined

Methods

step Convert pixel stream to image frame

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Convert Between Full-Frame and Pixel-Streaming Data

This example converts a custom-size grayscale image to a pixel stream. It uses the
visionhdl.LookupTable object to obtain the negative image. Then it converts the
pixel-stream back to a full-frame image.

Load the source image from a file. Select a portion of the image matching the desired test
size.

frmOrig = imread('rice.png');

frmActivePixels = 64;

frmActiveLines = 48;

frmInput = frmOrig(1:frmActiveLines,1:frmActivePixels);

figure

imshow(frmInput,'InitialMagnification',300)

title 'Input Image'

2-193

2 System Objects — Alphabetical List

Create a serializer object and specify size of inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+10,...

 'TotalVideoLines',frmActiveLines+10,...

 'StartingActiveLine',6,...

 'FrontPorch',5);

Create a lookup table (LUT) object to generate the negative of the input image.

tabledata = linspace(255,0,256);

inverter = visionhdl.LookupTable(tabledata);

Serialize the test image by calling the serializer object. pixIn is a vector of intensity
values. ctrlIn is a vector of control signal structures.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmInput);

Prepare to process pixels by preallocating output vectors.

2-194

 visionhdl.PixelsToFrame System object

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = zeros(numPixelsPerFrame,1,'uint8');

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the stream, look up the negative of the pixel value.

for p = 1:numPixelsPerFrame

 [pixOut(p),ctrlOut(p)] = inverter(pixIn(p),ctrlIn(p));

end

Create a deserializer object with a format matching that of the serializer. Convert the
pixel stream to an image frame by calling the deserializer object. Display the resulting
image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines);

[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput,'InitialMagnification',300)

 title 'Output Image'

end

• “Pixel-Streaming Design in MATLAB”

2-195

2 System Objects — Alphabetical List

See Also

See Also
visionhdl.FrameToPixels | Pixels To Frame

Topics
“Pixel-Streaming Design in MATLAB”
“Streaming Pixel Interface”

Introduced in R2015a

2-196

 step

step

System object: visionhdl.PixelsToFrame
Package: visionhdl

Convert pixel stream to image frame

Syntax

[frm,validOut] = step(P2F,pixels,ctrlIn)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[frm,validOut] = step(P2F,pixels,ctrlIn)

Converts a vector of pixel values representing a padded image, pixels, and an
associated vector of control structures, ctrlIn, to an image matrix, frm. The control
structure indicates the validity of each pixel and its location in the frame. The output
image, frm is valid if validOut is true.

See “Streaming Pixel Interface” for details of the pixel stream format.

Note: The System object performs an initialization the first time you call the step
method. This initialization locks nontunable properties and input specifications, such
as dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the object issues an error. To change nontunable
properties or inputs, first call the release method to unlock the object.

2-197

2 System Objects — Alphabetical List

Input Arguments

P2F — Deserializer
visionhdl.PixelsToFrame System object

Specify a visionhdl.PixelsToFrame System object that you created and configured.

pixels — Input pixels
matrix

Pixel values, specified as a P-by-NumComponents matrix, where:

• P is the total number of pixels in the padded image, calculated as
TotalPixelsPerLine × TotalVideoLines

• NumComponents is the number of components used to express a single pixel

Set the size of the padded image using the VideoFormat property. If the number of
elements in pixels does not match that specified by VideoFormat, The object returns a
warning.

Supported data types:

• uint or int
• fixdt()

• logical

• double or single

ctrlIn — Pixel stream control signals
vector of structures

Control structures associated with the input pixels, specified as a P-by-1 vector. P is
the total number of pixels in the padded image, calculated as TotalPixelsPerLine ×
TotalVideoLines. Each structure contains five control signals indicating the validity
of the pixel and its location in the frame. See “Pixel Control Structure”. If the dimensions
indicated by ctrlIn do not match that specified by VideoFormat, the object returns a
warning.

2-198

 step

Output Arguments

frm — Image frame
matrix

Image frame, returned as an ActiveVideoLines-by-ActivePixelsPerLine-
by-NumComponents matrix, where:

• ActiveVideoLines is the height of the active image
• ActivePixelsPerLine is the width of the active image
• NumComponents is the number of components used to express a single pixel

Set the size of the active image using the VideoFormat property. The data type of the
pixel values is the same as pixels.

validOut — Indicates valid output data
scalar logical

Frame status, returned as a logical value. When validOut is true, the frame is
reassembled and ready for use.

Introduced in R2015a

2-199

2 System Objects — Alphabetical List

visionhdl.ROISelector System object

Package: visionhdl

Select region of interest (ROI) from pixel stream

Description

The visionhdl.ROISelector System object selects a portion of the active frame from a
video stream. The total size of the frame remains the same. The control signals indicate a
new active region of the frame. The diagram shows the inactive pixel regions in blue and
the requested output region outlined in orange.

You can specify a fixed size and location for the new frame, or select the frame location
in real time via an input argument. You can select more than one region. Define each
region by the upper-left corner coordinates and the dimensions. The object returns one
set of pixels and control signals for each region you specify. The object sets the inactive
pixels in the output frame to zero. Regions are independent from each other, so they
can overlap. If you specify a region that includes the edge of the active frame, the object

2-200

 visionhdl.ROISelector System object

returns only the active portion of the region. The diagram shows the output frames for
three requested regions. The second output region (treetops) does not include the inactive
region above the frame.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

Construction

ROI = visionhdl.ROISelector returns a System object, ROI, that selects a default
region of the active frame from an input stream.

ROI = visionhdl.ROISelector(Name,Value) returns a System object, ROI,
with additional options specified by one or more Name,Value pair arguments. Name
is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

2-201

2 System Objects — Alphabetical List

Properties

RegionsSource

Location of the output region definitions.

'Property — Specify the regions in the Regions property.

'Input port' — Specify the regions using arguments to the step method. Each
argument is a 1-by-4 vector specifying coordinates for a single region. The object captures
the value of the region input ports when it receives vStart set to true in the input
control structure.

Default: 'Property'

Regions

Rectangular regions of interest to select from the input frame, specified as a N-by-4
matrix.

N is the number of regions. You can select up to 16 regions. The four elements that
define each region are the top-left starting coordinates and the dimensions, [hPos
vPos hSize vSize]. The coordinates count from the upper-left corner of the active
frame, defined as [1,1]. hSize must be greater than 1. The regions are independent of
each other, so they can overlap. This property applies when you set RegionsSource to
'Property'.

Default: [100 100 50 50]

NumberofRegions

Number of region arguments to the step method, specified as a positive integer.

You can select up to 16 regions. This property applies when you set RegionsSource to
'Input port'.

Default: 1

Methods

step Return next pixel in reselected frame

2-202

 visionhdl.ROISelector System object

Common to All System Objects

clone Create System object with same property values
getNumInputsExpected number of inputs to a System object
getNumOutputsExpected number of outputs of a System object
isLocked Check locked states of a System object (logical)
release Allow System object property value changes

Examples

Select Region of Interest

Select a fixed region of interest (ROI) from an input frame.

Load a source image from a file.

frmOrig = imread('coins.png');

[frmActiveLines,frmActivePixels] = size(frmOrig);

imshow(frmOrig)

title 'Input Image'

2-203

2 System Objects — Alphabetical List

Create a serializer object and define inactive pixel regions.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',frmActivePixels,...

 'ActiveVideoLines',frmActiveLines,...

 'TotalPixelsPerLine',frmActivePixels+20,...

 'TotalVideoLines',frmActiveLines+20,...

 'StartingActiveLine',3,...

 'FrontPorch',10);

Create an object to select a region of interest. Define a rectangular region by the
coordinates of the top-left corner and the dimensions.

hPos = 80;

vPos = 60;

hSize = 65;

vSize = 50;

roicoin = visionhdl.ROISelector('Regions',[hPos vPos hSize vSize])

2-204

 visionhdl.ROISelector System object

roicoin =

 visionhdl.ROISelector with properties:

 RegionsSource: 'Property'

 Regions: [80 60 65 50]

Serialize the test image by calling step on the serializer object. pixIn is a vector of
intensity values. ctrlIn is a vector of control signal structures.

Note: This syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

[pixIn,ctrlIn] = frm2pix(frmOrig);

Prepare to process pixels by preallocating output vectors. The output frame is the same
size as the input frame, but the control signals indicate a different active region.

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);

pixOut = uint8(zeros(numPixelsPerFrame,1));

ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

For each pixel in the padded frame, apply the region mask.

for p = 1:numPixelsPerFrame

 [pixOut(p),ctrlOut(p)] = roicoin(pixIn(p),ctrlIn(p));

end

Create a deserializer object with format matching the new region. Convert the pixel
stream to an image frame by calling step on the deserializer object. Display the
resulting image.

pix2frm = visionhdl.PixelsToFrame(...

 'NumComponents',1,...

 'VideoFormat','custom',...

 'ActivePixelsPerLine',hSize,...

 'ActiveVideoLines',vSize);

[frmOutput,frmValid] = pix2frm(pixOut,ctrlOut);

if frmValid

 figure

 imshow(frmOutput)

2-205

2 System Objects — Alphabetical List

 title 'Output Image'

end

Algorithm

The generated HDL code for the visionhdl.ROISelector System object uses two 32-
bit counters. It does not use additional counters for additional regions.

Latency

The object has a latency of three cycles. The object returns the output pixel and
associated control signals on the third call to the step method after the pixel value was
applied.

See Also
ROI Selector | visionhdl.FrameToPixels

Introduced in R2016a

2-206

 step

step
System object: visionhdl.ROISelector
Package: visionhdl

Return next pixel in reselected frame

Syntax

[pixel1,ctrl1] = step(ROI,pixelIn,ctrlIn)

[pixel1,ctrl1,...,pixelN,ctrlN] = step(ROI,pixelIn,ctrlIn)

[pixel1,ctrl1,...,pixelN,ctrlN] =

step(ROI,pixelIn,ctrlIn,region1,...,regionN)

Description

Note: Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were
a function. For example, y = step(obj,x) and y = obj(x) perform equivalent
operations.

[pixel1,ctrl1] = step(ROI,pixelIn,ctrlIn) returns the next pixel value,
pixel1, and control signals, ctrl1, resulting from masking the active image frame into
a single new region. Define the region by setting the Regions property to a 1-by-4 vector,
[hPos vPos hSize vSize].

[pixel1,ctrl1,...,pixelN,ctrlN] = step(ROI,pixelIn,ctrlIn) returns the
next pixel values, pixel1,...,pixelN, and control signals, ctrl1,...,ctrlN, of each
stream resulting from masking the active image frame into 1 to N new active regions, as
directed by the Regions property. Set the Regions property to a N-by-4 matrix of region
coordinates.

[pixel1,ctrl1,...,pixelN,ctrlN] =

step(ROI,pixelIn,ctrlIn,region1,...,regionN) returns the next pixel values
of each stream, pixel1,...,pixelN, resulting from masking the active image frame
into 1 to N new regions, as directed by the region1,...,regionN arguments. Each

2-207

2 System Objects — Alphabetical List

region input is a 1-by-4 vector of region coordinates. Use this syntax when you set the
RegionsSource property to 'Input Port', and the NumberOfRegions property to N.

This object uses a streaming pixel interface with a structure for synchronization control
signals. This interface enables the object to operate independently of image size and
format, and to connect easily with other Vision HDL Toolbox objects. The step method
accepts and returns a scalar pixel value. step also accepts and returns control signals as
a structure containing five signals. These signals indicate the validity of each pixel and
the location of each pixel in the frame.

Note: The object performs an initialization the first time you call the step method. This
initialization locks nontunable properties and input specifications, such as dimensions,
complexity, and data type of the input data. If you change a nontunable property or an
input specification, the System object issues an error. To change nontunable properties or
inputs, first call the release method to unlock the object.

Input Arguments

ROI — Region-of-interest selector
visionhdl.ROISelector System object

Specify a visionhdl.ROISelector System object that you created and configured.

pixelIn — Input pixel
scalar

Input pixel, specified as a scalar integer value.

• Any numeric data type.

double and single data types are supported for simulation but not for HDL code
generation.

ctrlIn — Pixel stream control signals
structure

Control signals indicating the validity of the input pixel and the location of the pixel
within the frame, specified as a structure containing five logical signals. See “Pixel
Control Structure”.

2-208

 step

region1,...,regionN — Regions of interest coordinates
1-by-4 vector

The four elements that define each region are [hPos vPos hSize vSize]. Use this
argument when RegionsSource is set to 'Input port'. You can specify N regions,
where N is the NumberOfRegions property value.

Output Arguments

pixel1,...,pixelN — Output pixels
scalar

Output pixels, specified as 1 to N scalar integers.

If you set RegionsSource to 'Input port', N is the value in NumberOfRegions. If
you set RegionsSource to 'Property', N is the number of columns in the Regions
property.

ctrl1,...,ctrlN — Pixel stream control signals
structure

Control signals indicating the validity of each output pixel and the location of each pixel
within the frame, returned as 1 to N structures of five logical signals. See “Pixel
Control Structure”.

If you set RegionsSource to 'Input port', N is the value in NumberOfRegions. If
you set RegionsSource to 'Property', N is the number of columns in the Regions
property.

Introduced in R2016a

2-209

3

Functions — Alphabetical List

3 Functions — Alphabetical List

getparamfromfrm2pix
Get frame format parameters

Syntax

[activePixelsPerLine,activeLines,numPixelsPerFrame] =

getparamfromfrm2pix(frm2pix)

Description

[activePixelsPerLine,activeLines,numPixelsPerFrame] =

getparamfromfrm2pix(frm2pix) returns video format parameters from a
visionhdl.FrameToPixels System object.

Examples

Configure Pixel Stream Format

When you choose a standard video format for visionhdl.FrameToPixels, the object
computes the frame dimensions. To access these values, call the getparamfromfrm2pix
function.

frm2pix = visionhdl.FrameToPixels(...

 'NumComponents',1,...

 'VideoFormat','240p');

[activePixels,activeLines,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix)

activePixels =

 320

activeLines =

 240

3-2

 getparamfromfrm2pix

numPixelsPerFrame =

 130248

Note that numPixelsPerFrame includes both active and inactive regions of the frame.

Input Arguments

frm2pix — Video serializer
visionhdl.FrameToPixels System object

The visionhdl.FrameToPixels object converts framed video to a stream of pixel
values and control signals. It contains useful parameters regarding the video format.

Output Arguments

activePixelsPerLine — Number of pixels in a horizontal line of the active video frame
positive integer

Number of pixels in a horizontal line of the active video frame, returned as a positive
integer.

For custom video formats, this value corresponds to the ActivePixelsPerLine
property of the frm2pix object.

activeLines — Number of horizontal lines in the active video frame
positive integer

Number of horizontal lines in the active video frame, returned as a positive integer.

For custom video formats, this value corresponds to the ActiveVideoLines property of
the frm2pix object.

numPixelsPerFrame — Number of active and inactive pixels in the video frame
positive integer

Number of active and inactive pixels in the video frame, returned as a positive integer.

3-3

3 Functions — Alphabetical List

For custom video formats, this value corresponds to the product of the
TotalVideoLines and TotalPixelsPerLine properties of the frm2pix object.

See Also

See Also
Frame To Pixels | Pixels To Frame

Topics
“Streaming Pixel Interface”

Introduced in R2015a

3-4

 pixelcontrolbus

pixelcontrolbus
Create pixel-streaming control bus instance

Syntax

pixelcontrolbus

Description

pixelcontrolbus declares a bus instance in the workspace. This instance is required
for HDL code generation. Call this function before you generate HDL code from Vision
HDL Toolbox blocks.

Examples

Declare Bus in Base Workspace

In the InitFcn callback function of your Simulink model, include this line to declare
a bus instance in the base workspace. If you create your model with the Vision HDL
Toolbox model template, this is done for you.

evalin('base','pixelcontrolbus')

If you do not declare an instance of pixelcontrolbus in the base workspace, you might
encounter this error when you generate HDL code in Simulink.

Cannot resolve variable 'pixelcontrol'

See Also

See Also
“Pixel Control Bus” | Frame To Pixels | Pixels To Frame

3-5

3 Functions — Alphabetical List

Topics
“Configure the Simulink Environment for HDL Video Processing”
“Streaming Pixel Interface”

Introduced in R2015a

3-6

 pixelcontrolsignals

pixelcontrolsignals

Extract signals from pixel-streaming control signal structure

Syntax

hStart,hEnd,vStart,vEnd,valid] = pixelcontrolsignals(ctrl)

Description

hStart,hEnd,vStart,vEnd,valid] = pixelcontrolsignals(ctrl) extracts five
scalar logical control signals from a structure.

Examples

Create and Decompose pixelcontrol structures

If you integrate Vision HDL Toolbox designs with algorithms that use a different
interface, you may need to create the structure manually, or manipulate the control
signals outside of the structure.

Create a pixelcontrol structure by passing five control signal values to the
pixelcontrolstruct function. The function arguments must be scalar values. These
control signals may come from a camera or other video input source. The control signal
vectors in this example describe a simple 2-by-3 pixel test image, surrounded by padding
pixels.

3-7

3 Functions — Alphabetical List

hStart = [0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0];

vStart = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];

hEnd = [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0];

vEnd = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0];

valid = [0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0];

pixel = uint8([0 0 0 0 0 0 0 30 60 90 0 0 0 120 150 180 0 0 0 0 0 0 0 0]);

[~,numPix] = size(pixel);

ctrlIn = repmat(pixelcontrolstruct,numPix,1);

for i = 1:numPix

 ctrlIn(i) = pixelcontrolstruct(hStart(i),vStart(i),...

 hEnd(i),vEnd(i),valid(i));

end

Each element of ctrlIn is a structure containing the five control signals.

ctrlIn(8)

ans =

 struct with fields:

 hStart: 1

 hEnd: 1

 vStart: 0

 vEnd: 0

 valid: 1

3-8

 pixelcontrolsignals

You can then pass this structure to a Vision HDL Toolbox System object. This example
uses the LookupTable object to invert each pixel.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

tabledata = uint8(linspace(255,0,256));

inverter = visionhdl.LookupTable(tabledata);

pixelOut = zeros(numPix,1,'uint8');

ctrlOut = repmat(pixelcontrolstruct,numPix,1);

for i = 1:numPix

 [pixelOut(i),ctrlOut(i)] = inverter(pixel(i),ctrlIn(i));

end

If you need to use the control signals directly in downstream algorithms, you
can flatten each structure into five logical control signal values by calling the
pixelcontrolsignals function.

[hStartOut,vStartOut,hEndOut,vEndOut,validOut] = deal(false(numPix,1));

for i = 1:numPix

 [hStartOut(i),vStartOut(i),hEndOut(i),vEndOut(i),validOut(i)] = ...

 pixelcontrolsignals(ctrlOut(i));

end

Each output control signal is a vector of logical values that correspond with the
pixelOut vector.

validOut'

ans =

 1×24 logical array

 Columns 1 through 19

 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0

 Columns 20 through 24

 0 0 0 0 0

3-9

3 Functions — Alphabetical List

Input Arguments

ctrl — Pixel control signals
structure containing five logical values

Pixel control signals, specified as a structure containing five logical values.

The pixel control structure is a specific format used by Vision HDL Toolbox objects. See
“Pixel Control Structure”.

Output Arguments

hStart — Control signal indicating the first pixel in a horizontal line
logical

Control signal indicating the first pixel in a horizontal line, specified as a logical
scalar.

hEnd — Control signal indicating the last pixel in a horizontal line
logical

Control signal indicating the last pixel in a horizontal line, specified as a logical scalar.

vStart — Control signal indicating the first pixel in the first (top) line
logical

Control signal indicating the first pixel in the first (top) line, specified as a logical
scalar.

vEnd — Control signal indicating the last pixel in the last (bottom) line
logical

Control signal indicating the last pixel in the last (bottom) line, specified as a logical
scalar.

valid — Control signal indicating the validity of the pixel
logical

3-10

 pixelcontrolsignals

Control signal indicating the validity of the pixel, specified as a logical scalar.

See Also

See Also
visionhdl.FrameToPixels | visionhdl.PixelsToFrame | pixelcontrolstruct

Topics
“Streaming Pixel Interface”

Introduced in R2015a

3-11

3 Functions — Alphabetical List

pixelcontrolstruct

Create pixel-streaming control signal structure

Syntax

ctrl = pixelcontrolstruct(hStart,hEnd,vStart,vEnd,valid)

Description

ctrl = pixelcontrolstruct(hStart,hEnd,vStart,vEnd,valid) creates a
structure containing the five control signals used by Vision HDL Toolbox objects. The
input arguments must be five scalars of logical type. See “Pixel Control Structure”.

Examples

Create and Decompose pixelcontrol structures

If you integrate Vision HDL Toolbox designs with algorithms that use a different
interface, you may need to create the structure manually, or manipulate the control
signals outside of the structure.

Create a pixelcontrol structure by passing five control signal values to the
pixelcontrolstruct function. The function arguments must be scalar values. These
control signals may come from a camera or other video input source. The control signal
vectors in this example describe a simple 2-by-3 pixel test image, surrounded by padding
pixels.

3-12

 pixelcontrolstruct

hStart = [0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0];

vStart = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];

hEnd = [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0];

vEnd = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0];

valid = [0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0];

pixel = uint8([0 0 0 0 0 0 0 30 60 90 0 0 0 120 150 180 0 0 0 0 0 0 0 0]);

[~,numPix] = size(pixel);

ctrlIn = repmat(pixelcontrolstruct,numPix,1);

for i = 1:numPix

 ctrlIn(i) = pixelcontrolstruct(hStart(i),vStart(i),...

 hEnd(i),vEnd(i),valid(i));

end

Each element of ctrlIn is a structure containing the five control signals.

ctrlIn(8)

ans =

 struct with fields:

 hStart: 1

 hEnd: 1

 vStart: 0

 vEnd: 0

 valid: 1

3-13

3 Functions — Alphabetical List

You can then pass this structure to a Vision HDL Toolbox System object. This example
uses the LookupTable object to invert each pixel.

Note: This object syntax runs only in R2016b or later. If you are using an earlier release,
replace each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(myObject,x).

tabledata = uint8(linspace(255,0,256));

inverter = visionhdl.LookupTable(tabledata);

pixelOut = zeros(numPix,1,'uint8');

ctrlOut = repmat(pixelcontrolstruct,numPix,1);

for i = 1:numPix

 [pixelOut(i),ctrlOut(i)] = inverter(pixel(i),ctrlIn(i));

end

If you need to use the control signals directly in downstream algorithms, you
can flatten each structure into five logical control signal values by calling the
pixelcontrolsignals function.

[hStartOut,vStartOut,hEndOut,vEndOut,validOut] = deal(false(numPix,1));

for i = 1:numPix

 [hStartOut(i),vStartOut(i),hEndOut(i),vEndOut(i),validOut(i)] = ...

 pixelcontrolsignals(ctrlOut(i));

end

Each output control signal is a vector of logical values that correspond with the
pixelOut vector.

validOut'

ans =

 1×24 logical array

 Columns 1 through 19

 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0

 Columns 20 through 24

 0 0 0 0 0

3-14

 pixelcontrolstruct

Input Arguments

hStart — Control signal indicating the first pixel in a horizontal line
logical

Control signal indicating the first pixel in a horizontal line, specified as a logical
scalar.

hEnd — Control signal indicating the last pixel in a horizontal line
logical

Control signal indicating the last pixel in a horizontal line, specified as a logical scalar.

vStart — Control signal indicating the first pixel in the first (top) line
logical

Control signal indicating the first pixel in the first (top) line, specified as a logical
scalar.

vEnd — Control signal indicating the last pixel in the last (bottom) line
logical

Control signal indicating the last pixel in the last (bottom) line, specified as a logical
scalar.

valid — Control signal indicating the validity of the pixel
logical

Control signal indicating the validity of the pixel, specified as a logical scalar.

Output Arguments

ctrl — Pixel control signals
structure containing five logical values

Pixel control signals, specified as a structure containing five logical values.

3-15

3 Functions — Alphabetical List

The pixel control structure is a specific format used by Vision HDL Toolbox objects. See
“Pixel Control Structure”.

See Also

See Also
visionhdl.FrameToPixels | visionhdl.PixelsToFrame | pixelcontrolsignals

Topics
“Streaming Pixel Interface”

Introduced in R2015a

3-16

